舒城县建筑垃圾污染环境防治工作规划(2024-2035年) (文本+图件+说明书)

思城设计集团有限公司 2024年9月

舒城县建筑垃圾污染环境防治工作规划(2024-2035年) 文本

思城设计集团有限公司 2024年9月

城乡规划编制资质证书

证书编号: 自资规甲字23420665

单位名称: 思城设计集团有限公司

承担业务范围:业务范围不受限制

证书等级: 甲级

扫码登录"城乡规划编制单位信息公示系统"了解更多信

统一社会信用代码: 914201060705354490

有效期限: 自2023年 2 月 1 日 至2025年 12 月 31 日

中华人民共和国自然资源部印制

项目 名称:舒城县建筑垃圾污染环境防治规划(2024-2035年)

规划 单位: 思城设计集团有限公司

资质 等级: 城乡规划甲级

资质 编号: 自资规甲字 23420665

法定代表人:

审 定: 李安均 正高职高级工程师

审核:彭为国高级工程师

校 对: 王福定 高级工程师、注册城乡规划师

项目负责人: 杜 强 城乡规划/土地规划高级工程师、注册城乡规

划师

项目组成员:

黄宗亚 工程师

何鹏程 工程师

王 东 工程师

罗慧玲 工程师

朱雅霜 工程师

第一	-章	. ,	总贝	N	6
	第	1	条	编制背景	6
	第	2	条	成果内容	6
	第	3	条	规划依据	6
	第	4	条	规划范围	8
	第	5	条	规划期限	8
	第	6	条	规划原则	8
	第	7	条	规划对象	8
第二	章	敖	见划	川目标与规模预测	10
	第	8	条	总体目标	10
	第	9	条	分期目标	10
	第	10) 条	、规模预测	11
第三	章	廷	建筑	气垃圾源头减量规划	12
	第	11	条	、源头减量要求	12
	第	12	2条	⊱源头减量总体措施	12
	第	13	3条	€分类源头减量措施	13
	第	14	1条	⊱源头污染环境防治要求	13
第四	章	廷	建筑	气垃圾收集运输规划	15
	第	15	5条	、 收运主体	15
	第	16	5条	€ 收运模式	15
	第	17	7条	€ 分类收集	15
	第	18	3条	、 收运流程	16
	第	19) 条	、收运队伍建设	19
	第	20) 条	、收运线路	19
	第	21	条	、 收运设施规划	20

第五章	建	筑力	立圾利用及处置规划	25
第	22	条	处置方式	.25
第	23	条	处置方案	.26
第	24	条	处置规划	.27
第	25	条	建筑垃圾存量治理规划	29
第六章	建	筑力	立圾监督管理规划	31
第	26	条	部门职责	.31
第	27	条	制度落实与建设	32
第	28	条	智能管理信息系统规划	35
第七章	建	筑县	立圾资源化利用产业发展规划	.37
第	29	条	建筑垃圾资源利用模式	37
第	30	条	建筑垃圾直接利用	37
第	31	条	建筑垃圾资源化再生利用	38
第	32	条	建筑垃圾产业化运营与管理	41
第一章	环:	境值	呆护与安全卫生	43
第	33	条	大气环境保护措施	43
第	34	条	水环境保护措施	47
第	35	条	噪声环境保护措施	49
第	36	条	土壤环境保护措施	50
第	37	条	水土流失、地质灾害防治措施	. 52
第二章	近	期期	观划实施计划	54
第	38	条	近期建设内容	54
第八章	保	障扌	昔施和实施建议	56
第	39	条	保障措施	.56
牟	40	夂	空站建议	57

第一章 总则

第1条 编制背景

为深入贯彻落实党的二十大精神和习近平新时代中国特色社会主义思想,加强舒城县建筑垃圾全方位全周期全过程管理,促进经济、社会和环境持续发展。结合舒城县环卫规划的要求,按照"强化管理、从严执法、集中整治、落实长效"的工作方针,特编制《舒城县建筑垃圾污染环境防治工作规划(2024-2035年)》(以下简称本规划)。

第2条 成果内容

本规划成果包括文本、图纸和附件(说明书、中标通知书、会议纪要、意见答复和 项目选址用地红线图等),其中经批准后的文本和图纸属效力性文件,具有同等法律效力。

第3条 规划依据

1、法律法规

《中华人民共和国固体废物污染环境防治法》(2020年修订);

《中华人民共和国环境保护法》(2014年修订);

《中华人民共和国循环经济促进法》(2018年修订);

《中华人民共和国城乡规划法》(2019年修订);

《中华人民共和国大气污染防治法》(2018年修订);

《中华人民共和国噪声污染防治法》(2021年修订);

《建设项目环境保护管理条例》(2017年修订);

《城市建筑垃圾管理规定》 (建设部令〔2005〕139号);

《城市市容和环境卫生管理条例》(2017年修订);

《市政公用事业特许经营管理办法》(2015年);

《城市规划编制办法实施细则》(2006年);

《建筑垃圾资源化利用行业规范条件(暂行)》:

《安徽省城乡规划条例》;

2、标准规范

《城市环境卫生设施规划标准》(GB/T50337-2018):

《建筑垃圾减量化设计标准》(T/CECS1121-2022);

《危险废物贮存污染控制标准》(GB18597-2023);

《环境卫生设施设置标准》(CJJ27-2012);

《建筑垃圾处理技术标准》(CJJ/T134-2019);

《市容环境卫生术语标准》(CJJ/T65-2004);

《危险废物收集、贮存、运输技术规范》(HJ2025-2012);

《建筑垃圾转运处理电子联单管理标准》(T/CECS1210-2022);

3、相关规划及技术文件

《中共中央国务院关于进一步加强城市规划建设管理工作的若干意见》(中发〔2016〕6号);

《国务院关于加快建立健全绿色低碳循环发展经济体系的指导意见》(国发〔2021〕4号);

《国务院办公厅转发国家发展改革委等部门关于加快推进城镇环境基础设施建设指导意见的通知》(国办函〔2022〕7号);

《国务院办公厅关于加快构建废弃物循环利用体系的意见》(国办发〔2024〕 7号);

《关于"十四五"大宗固体废弃物综合利用的指导意见》(发改环资〔2021〕 381 号);

《住房和城乡建设部国家发展改革委关于印发城乡建设领域碳达峰实施方案的通知》(建标〔2022〕53号);

《住房和城乡建设部关于推进建筑垃圾减量化的指导意见》(建质〔2020〕 46号);

安徽省《关于加强建筑垃圾管理及资源化利用的指导意见》的通知(建督〔2020〕96号);

《六安市国土空间总体规划(2021-2035年)》;

《六安市环境卫生设施布局国土空间专项规划》(2022-2035);

《舒城县国土空间总体规划(2021-2035年)》;

4、其他

其他相关基础资料及文件。

第4条 规划范围

本次规划范围为舒城县下辖的15个镇、6个乡和1个开发区。

第5条 规划期限

规划基期年为 2024 年, 近期: 2024-2027 年; 中期: 2028-2030 年; 远期: 2031-2035 年。

第6条 规划原则

- 1、统筹规划、合理布局
- 2、分区规划, 因地制宜
- 3、规划协调、分步实施
- 4、全过程管理、长效管理
- 5、源头减量、利用优先
- 6、科学合理、实施性强

第7条 规划对象

本规划中建筑垃圾是指工程渣土、工程泥浆、工程垃圾、拆除垃圾和装修垃圾等的总称。包括新建、扩建、改建和拆除各类建筑物、构筑物、管网以及居民

装饰装修房屋过程中所产生的弃土、弃料及其他废弃物,不包括经检验、鉴定为 危险废物的建筑垃圾。

- 1、工程渣土: 各类建筑物、构筑物、管网等基础开挖过程中产生的弃土。
- 2、工程泥浆:钻孔桩基施工、地下连续墙施工、泥水盾构施工、水平定向钻及泥水顶管等施工产生的泥浆。
 - 3、工程垃圾: 各类建筑物、构筑物等建设过程中产生的弃料。
 - 4、拆除垃圾: 各类建筑物、构筑物等拆除过程中产生的弃料。
 - 5、装修垃圾:装饰装修过程中产生的废弃物。

第二章 规划目标与规模预测

第8条 总体目标

推进建筑垃圾源头减量,践行"绿色策划、绿色设计、绿色施工、绿色交付", 建立健全建筑垃圾分类处理设施和保障体系,建立建筑垃圾全过程管理和环境防 治制度,完善建筑垃圾多部门联动及监督考核体系,形成建筑垃圾的源头减量、 分类投放、中端收运、末端处置和再生产品利用的全流程管理体系。

依法简化建筑垃圾资源化利用项目用地审批手续,加快补齐能力缺口,推动规模化的建筑垃圾资源化利用示范项目建设,实现源头减量化、处置资源化、全面无害化,促进城乡绿色发展、低碳发展和生态发展。

本规划的总体目标是实现舒城县建筑垃圾的无害化、减量化、资源化处理, 到 2027 年全县建筑垃圾资源化利用率达到 65%,工程、拆装、装修垃圾资源化 利用率达到 50%。

第9条 分期目标

1、名词定义:

建筑垃圾综合利用率是指建筑垃圾中能够被回收利用的部分占建筑垃圾总量的比例。

建筑垃圾资源化利用率是指将建筑垃圾转化为资源产品的比例,即建筑垃圾经过处理后,能够被再次利用的部分占原始建筑垃圾总量的百分比。

2、规划指标

规划指标体系的选择和指标数据的确定综合考虑了舒城县建筑垃圾现状水平、国内发达城市/地区的建筑垃圾的发展指标,以及国家文明城市和国家卫生城市的相关要求。

指标类别	指标内容	近期指标 (2027年)	中期指标 (2030 年)	远期指标 (2035 年)	备注	
------	------	-----------------	---------------	------------------	----	--

		二现场建筑垃圾排放量 渣土、工程泥浆)(t/ 万m²)	≤300	≤300	≤250	
減量 化		医工现场建筑垃圾排放 程渣土、工程泥浆)(t/ 万m²)	≤200	€200	€200	约束性
		文建筑面积占新建建筑 比例(%)	≥35	≥35	≥40	
	建筑垃圾	综合利用率(%)	≥65	≥70	≥90	
资源	工程、拆装、	装修垃圾资源化利用率 (%)	≥50	≥55	≥60	约
化		工程垃圾	50	55	60	東性
	其中	拆除垃圾	50	55	60	
		装修垃圾	50	55	60	
无害	建筑垃圾名	密闭化运输率(%)	100	100	100	约 東
化	建筑垃圾	无害化处理率(%)	90	95	100	性
智能化	运输车辆车载	战卫星定位系统安装比例(%)	100	100	100	约由
		埋消纳场监控管理系统 装比例(%)	100	100	100	東性

第10条 规模预测

本次的预测结果为 2027 年舒城县建筑垃圾预计产量为 222.11 万吨。2030 年舒城县建筑垃圾预计产量为 223.82 万吨。2035 年舒城县建筑垃圾预计产量为 226.38 万吨。具体明细如下:

建筑垃圾产生量预测汇总表(单位:万吨)						
类别	2027 年	2030 年	2035 年			
工程垃圾	4. 58	3. 93	4. 13			
拆除垃圾	0.85	0.85	0.85			
装修垃圾	15. 34	17. 70	20.06			
工程渣土 (工程泥浆)	201. 34	201. 34	201. 34			
合计	222. 11	223. 82	226. 38			

第三章 建筑垃圾源头减量规划

第11条 源头减量要求

为贯彻落实《关于推动城乡建设绿色发展的实施方案》(皖办发〔2021〕34号)、《安徽省建筑节能降碳行动计划的通知》(皖政办〔2022〕11号)及《六安市城乡建设领域碳达峰实施方案》(六建科〔2023〕36号)等文件要求,到2027年底,舒城县装配式建筑新开工面积占新建建筑面积比例达到50%以上,竣工装配式建筑面积占竣工建筑面积比例达到30%以上。

第12条 源头减量总体措施

- 1、推广装配式建筑,推行工程总承包和全过程工程咨询模式,构建建筑垃圾减排体系,从源头上着力减少建筑垃圾的排放。
- 2、优化建筑设计。工程设计单位应按照相关规范,优化设计标高,推广 BIM 设计。在减少建筑垃圾方面,建筑设计方案中要考虑的问题有:建筑物应有较长的使用寿命;采用可以少产生建筑垃圾的结构设计;选用少产生建筑垃圾的建材和再生建材;应考虑到建筑物将来维修和改造时便于进行,且建筑垃圾较少;应考虑建筑物在将来拆除时建筑材料和构件的再生问题。
- 3、应推广新的施工技术,提高结构的施工精度,避免凿除或修补而产生的垃圾。现在有很多建筑的结构是现场浇筑的,但尺寸控制精度常常不够,达不到横平竖直的要求,在粉刷之前还要对局部构件做凿除和修补处理,造成浪费。
- 4、做好施工组织。施工单位应当编制建筑垃圾处理方案,应采取污染防治措施;加强 BIM 技术等信息化手段的运用,减少因施工质量原因造成的建筑资源浪费及建筑垃圾产生;推广智慧工地监管系统,提升施工工地监管水平和施工质量。
- 5、加强施工工地施工人员环保意识。施工人员应有较强的环保意识,认真 学习国家对环保方面的法律法规,提高环保素质。在施工中做到工完场地清,多

余材料及时回收再利用,不仅利于环境保护,还可以减少材料浪费,节约费用。

6、做好施工场地临时设施再利用。再利用再循环原则的核心是节约能源和资源,减少消耗,使内循环成为可能,以最大程度地延长资源的使用寿命,实现资源的可持续利用,构建一个循环、可持续的发展模式。

第13条 分类源头减量措施

1、工程垃圾

- (1) 应优先使用绿色建材;
- (2) 应发展预制装配式建筑;
- (3) 应在优化设计质量和深度;
- (4) 应加强施工精细化管理。

2、拆除垃圾

- (1) 应在规划阶段考虑未来建筑物的拆除;
- (2) 应做好旧建筑的处置评价工作;
- (3) 应优化建筑物的拆解方式。

3、装修垃圾

- (1) 可通过推广全装修房、改善施工工艺和提高施工水平等多种方式,从源头上减少装修垃圾的产生量。
- (2) 引导和鼓励新建建筑住宅一次装修到位或采取菜单式定制装修等模式,对毛坯房予以限制,着力减少室内装修垃圾产生量。

4、工程渣土、工程泥浆

- (1) 工程渣土和少量工程泥浆可采用区域土方调配的方式,减少需要处理和堆填消纳的总量。
 - (2) 对于施工产生的可用于工程回填的工程渣土,优先用于土方平衡。

第14条 源头污染环境防治要求

根据《建筑施工安全检查标准(JGJ59-2011)》中对文明施工的要求:

1、现场围挡

城区主要路段的工地应设置高度不小于 2.5m 的封闭围挡;

一般路段的工地应设置高度不小于 1.8m 的封闭围挡;

原则上,房建项目必须使用砖砌围墙,围挡顶部应设置高压雾化喷淋设备; 特殊情况不能设置砖砌围墙的,围挡底部应使用混凝土或砌砖作为基础且高度不 小于50公分,围挡内侧应设置环形贯通排水沟。

2、封闭管理

- (1) 施工现场进出口应设置大门,并应设置门卫值班室;
- (2) 应建立门卫值守管理制度,并应配备门卫值守人员;
- (3) 施工人员进入施工现场应佩戴工作卡;
- (4) 施工现场出入口应标有企业名称或标识,并应设置车辆冲洗设施。

3、施工场地

- (1) 施工现场的主要道路及材料加工区地面应进行硬化处理;
- (2) 施工现场道路应畅通,路面应平整坚实;
- (3) 施工现场应有防止扬尘措施;
- (4) 施工现场应设置排水设施,且排水通畅无积水;
- (5) 施工现场应有防止泥浆、污水、废水污染环境的措施。

第四章 建筑垃圾收集运输规划

第15条 收运主体

建筑垃圾的收运主体为建筑垃圾产生单位,由建筑垃圾产生单位委托有资质的收运公司进行运输。工程垃圾、拆除垃圾、工程渣土、工程泥浆的收运主体为施工单位,装修垃圾的收运主体为物业公司或居民。

第16条 收运模式

建筑垃圾收运可采用两种模式,一是直运模式,处置单位直接到建筑垃圾产生点收集,并运输到建筑垃圾消纳场所;二是转运模式,产生单位把建筑垃圾运送至指定的中转调配场或资源化利用设施,进过分拣或者资源化利用后,再将不可利用的建筑垃圾由处置单位和公司定期运输至消纳场。

建筑垃圾资源化处置场及消纳场周边乡镇的建筑垃圾采用直运模式,其他乡镇的建筑垃圾采用转运模式。

第17条 分类收集

1、工程渣土

- (1) 工程渣土应当随挖随运,因特殊原因确实需要临时存放的工程渣土应 在施工现场安全区域集中堆放,堆放高度不应超出围挡(墙)高度,并与围挡(墙) 及基坑周边保持安全距离,与现有的建筑物或构筑物保持安全距离。
- (2) 堆放建筑垃圾时,堆放高度高出地坪不宜超过3米,当超过3米时, 应进行堆体和地基稳定性验算,保证堆体和地基的稳定安全。当堆场场地附近有 挖方工程时,应进行堆体和挖方边坡稳定性验算,保证挖方工程安全。

2、工程泥浆

(1) 有产生工程泥浆的施工现场应设置泥浆池,工程泥浆应通过泥浆池进行收集,泥浆池应设置防护栏,并挂设"泥浆池危险请勿靠近"安全警示牌。

(2) 产生工程泥浆的施工场地,宜实施现场泥浆脱水处置。现场泥浆脱水处置,宜配备收集管网、沉淀池、泥饼堆场等设施。

3、工程垃圾

- (1) 柱基工程的工程桩桩头、基坑工程的混凝土支护构件可统一收集。现场破碎、分离混凝土和钢筋时,混凝土和钢筋应分类堆放。
 - (2) 道路混凝土或沥青混合料应单独收集。
- (3) 其他工程垃圾不应与工程桩桩头、支撑或道路混凝土、沥青混合料混杂。

4、拆除垃圾

- (1) 房屋等建(构)筑物拆除前应清除、腾空内部可移动设施、设备、家具等物品。
 - (2) 附属构件(门、窗等)可先于主体结构拆除,分类堆放。
 - (3) 拆除的混凝土梁、柱、楼板构件或其他预制件可统一破碎后收集。
 - (4) 砖瓦宜分类堆放。

5、装修垃圾

- (1) 装修垃圾的收集实行袋装化,装修过程中产生的木料、砂浆砖石、塑料、玻璃、金属等废料分类装袋,由居民或物业公司委托收运单位收集和运输。
 - (2) 装修垃圾设置建筑垃圾分类收集点,并应符合下列要求:
 - 1) 应能容纳场所范围内的装修垃圾,同时供收运车辆进出、回车。
 - 2) 地面应硬化, 宜与场地道路同高。
 - 3)应设置标识标牌、围挡、遮雨、消防设施,宜设置视频监控设备。
 - 4) 应与周围环境相协调。

第18条 收运流程

工程渣土、工程泥浆、工程垃圾、拆除垃圾和装修垃圾应其产生地和处置方式的不同,收运体系也有所差异。本规划将建筑垃圾收运体系分为以下四类。

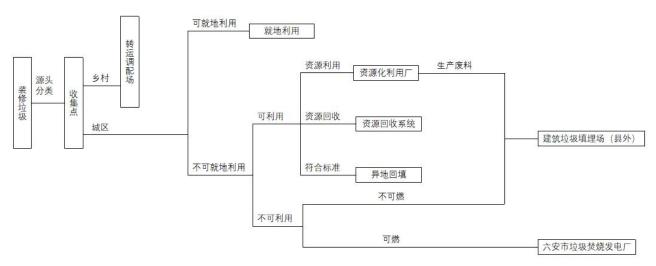
1、工程垃圾和拆除垃圾

- (1) 行政许可阶段:产生单位和个人需办理相关许可手续,提交工程相关信息,确定承运单位、运输时间。
- (2) 施工阶段: 所有工程必须做到封闭施工和降尘施工,施工出入口应当硬化,设立车辆冲洗设备和沉淀池,严禁在车行道上堆放施工材料和建筑垃圾。工地开工后,工程垃圾和拆除垃圾均按照管理要求分类、集中堆放。工地安装视频监控,执法部门不定期的到工地进行巡查。
- (3)运输阶段:工程垃圾和拆除垃圾产生后,由指定的承运单位进场进行清运。建筑垃圾运输车辆审查采用半年审制,严格审查企业车辆数量、车辆密闭性和管理情况。
- (4) 处置阶段:工程垃圾和拆除垃圾必须清运至指定的处置场所进行资源 化利用或填埋处置。城市管理行政执法部门建立完善日常巡查机制,查处无证处 置建筑垃圾行为。处置场所安装视频设备,通过建筑垃圾信息管理系统对进出车 辆和处置场运行情况进行监管。

2、工程渣土

工程渣土就地回填, 异地回填, 或直运至消纳场。

- (1) 行政许可阶段: 产生单位和个人需办理相关许可手续, 提交工程相关信息, 确定承运单位、运输时间。
- (2)施工阶段: 所有工程必须做到封闭施工和降尘施工,施工出入口应当硬化,设立车辆冲洗设备和沉淀池,严禁在车行道上堆放施工材料和建筑垃圾。工地开工后,工程渣土及时清运。工地安装视频监控,执法部门不定期的到工地进行巡查。
- (3)运输阶段:工程垃圾和拆除垃圾产生后,由指定的承运单位进场进行 清运。建筑垃圾运输车辆审查采用半年审制,严格审查企业车辆数量、车辆密闭 性和管理情况。


(4) 处置阶段:工程渣土必须清运至指定的消纳场或用于土方平衡调配,以及其他能够资源化利用的场所。城市管理部门建立完善日常巡查机制,查处无证处置建筑垃圾行为。处置场所安装视频设备,通过建筑垃圾信息管理系统对进出车辆和处置场运行情况进行监管。

3、工程泥浆

工程泥浆应在施工现场设立沉淀池,经脱水预处理后形成干泥,再按照工程 渣土流程运送至消纳场或填埋场。

4、装修垃圾

装修垃圾的收运流程示意图见下图。

(1) 施工阶段

居住区内设置建筑垃圾分类收集点,产生单位或企业在内部划出区域作为临时堆放场地,产生的建筑垃圾需进行分类、袋装,堆放与集中在收集场地,由住建局进行指导与监督,做好建筑垃圾分类堆放和日常管理服务工作。对三无小区或条件有限的区域,可以采用定时或预约上门收集等方式解决建筑垃圾临时堆放问题。

(2) 运输阶段

产生单位(个人)或物业公司委托有资质的运输企业从建筑垃圾分类收集点运输至资源化利用厂。城市管理部门同时对作业公司的运输车辆进行审查,公安

交警部门对运输路线进行拟定和监管。建筑垃圾运输车辆审查采用半年审制,严格审查企业车辆数量、车辆密闭性和管理情况。

(3) 处置阶段

装修垃圾分类清运至指定的处置场所进行资源化利用或填埋处置。处置场所安装视频设备,通过建筑垃圾信息管理系统对进出车辆和处置场运行情况进行监管。

(4) 执法检查

针对偷倒乱倒装修垃圾的行为由城市管理部门依法依规进行处罚。

第19条 收运队伍建设

1、收运服务公司管理人员与调度人员

源头控制是建筑垃圾质量得以保证的关键,为保障收运地点、数量准确性,采用信息化管理系统及时将信息反馈给收运服务公司管理人员与调度人员,以便根据情况,安排收运车辆,使车辆不空跑,收运工作有的放矢。

2、监管部门

收运体系的监管部门包括城市管理部门、公安交警部门等。公安交警部门负 责通行时间、行驶路线、车辆管理,城市管理部门负责建筑垃圾运输车辆密闭性 的监察和运输企业资质的审查。

3、收运车辆

建筑垃圾由办理处置核准许可、备案登记的车辆进行运输。

第20条 收运线路

建筑垃圾运输车辆属于特殊行业运输车辆,在舒城县范围内运输需要由建筑垃圾产生企业向舒城县公安交警部门申报,收运线路由舒城县公安交警部门根据项目报批的所在地拟定,制定的原则有:

- (1) 就近运输、减少成本;
- (2) 允许全天收运,但限行时段和限行路段除外;

(3) 允许相邻城区协同推进资源化利用的跨区收运。

综上,本规划要求建筑垃圾收运路线必须严格按照报审运输路线行驶,不得 在公安交警部门规定的限行路段、限行时间内通行。

第21条 收运设施规划

1、分类收集点

针对装修垃圾的收集,设置装修垃圾分类收集点。城区分类收集点结合生活垃圾收集点进行布置,各乡镇根据实际情况布置装修垃圾分类收集点。工程垃圾、拆除垃圾和工程渣土(含泥浆)收集点设在施工场地,由施工单位进行分类收集、运输和处置,不再单独设置收集点。

(1) 布置原则

便收利运:考虑群众的投放习惯,结合最佳收运路径,科学合理的布点。

分类收集: 在建筑垃圾分类收集点设立醒目的标识牌,要求分类袋装,不得混入生活垃圾和有害有毒危险废弃物。

安全可行:落实建筑垃圾防尘、防渗及防溢措施。及时清运,隔离作业防止扩散污染周围环境。

(2) 技术要求

装修垃圾分类收集点主要用于收集居民区装饰、维修及拆除等过程中产生的装修垃圾。每个小区、行政村(社区)原则上都应设置1座建筑垃圾分类收集点,新建居住小区应在规划建设时同步配套设置若干场地作为分类收集点,并与小区一并投入使用,新建公用区域的分类收集点可在工地临时设置。场地平整并硬质化,装卸垃圾时应洒水降尘。居民将装修垃圾进行分类装袋捆扎,堆放到指定的分类收集点,由居民或物业公司定期收运至建筑垃圾转运调配场或资源化利用场进行处理。要求新建小区的建筑垃圾分类收集点应每周至少进行一次收运,建成五年以上的小区的建筑垃圾分类收集点应每月至少进行一次收运。

(3) 建设规模

结合居民的生活垃圾收集点进行布置,各乡镇根据建筑垃圾产生情况建设装修垃圾分类收集点。

(4) 运营与维护

- 1)居民将打包好的建筑垃圾自行投放至分类收集点内,保持场地整洁,无撒漏垃圾,无堆积杂物。
 - 2) 建立健全各项管理制度,设施标识标牌齐全,便于分类堆放。
- 3) 堆放一定数量后,由居民或者物业公司联系收运企业将建筑垃圾清运到 指定的资源化处理厂和消纳场。可根据堆积量灵活调整清运频次,保障居民有整 洁卫生的环境。
- 4) 收运车辆应根据进场证明进场,实行"一车一单"制度,分类收集点管理人员应对清运车辆进行登记、驾驶员签字确认。
- 5) 严禁将生活垃圾、工业固废、危险废物等混入建筑垃圾,根据情节严重程度,报有关部门处理。
- 6) 应保持场地内通道畅通、干净,规范设置交通指示标志,危险路段应设置危险标志,管理人员需及时排查和处理各种安全隐患,做到安全规范堆放建筑垃圾。

2、建筑垃圾转运调配场

针对舒城县产生的建筑垃圾,设置建筑垃圾转运调配场。工程垃圾、装修垃圾、拆除垃圾通过建筑垃圾转运调配场转运至消纳及资源化利用处置场进行处置。 工程渣土(含泥浆)转运至消纳场进行处置。

建筑垃圾转运调配场主要用于建筑垃圾(包括工程渣土)的集中、前端分拣,及暂时无法进行利用的建筑垃圾和运输距离远、需要中转的建筑垃圾的临时堆放。建筑垃圾转运调配场内可设置分拣场地,将进场垃圾中可利用的物质分拣出来分类堆放,待分拣完成后,有价值的物质进入废品回收体系,其他可资源化利用的建筑垃圾运输至建筑垃圾资源化利用厂,装修垃圾分拣后的危险废弃物及有害垃

圾进入危废处理设施。

(1) 布置原则

统筹设置:综合考虑产生量、收(转)运能力及运距、处置方式、环境影响、 群众意愿等因素,科学选点,适当规模、适当数量设置,力求设置数量与实际需求基本匹配。

严格控制:严格遵守国家、省市有关法律法规规定,按规定的要求开展报批管理,经审核、批准后方可设置。禁止未经批准擅自设置,切实加强对违规堆放场所的日常监管,依法严查违规设置、不规范设置、安全环保管理不到位等突出问题,确保设置规范、管理到位。

安全运行:遵循"安全第一"原则,严格按照法律、法规、规定的安全管理要求。建设运行主体单位必须制定安全、环保事故处置预案,明确现场管理安全环保责任,落实场所安全环保管理措施,常态化组织安全环保隐患排查及整改,严防发生安全生产事故和环境污染。

(2) 技术要求

- 1) 建筑垃圾可采取露天或室内堆放方式, 露天堆放的建筑垃圾应及时覆盖。
- 2) 建筑垃圾堆放高度高出地坪不宜超过3米, 当超过3米时, 应进行堆体和地基稳定性验算, 保证堆体和地基的稳定安全。当堆场场地附近有挖方工程时, 应进行堆体和挖方边坡稳定性验算, 保证挖方工程安全。
- 3)建筑垃圾转运调配场应采用硬化地坪,其标高应高于周围地坪标高 15 厘米以上,建筑垃圾转运调配场四周应设置排水沟,并满足场地雨水导排要求。
 - 4) 建筑垃圾转运调配场应分类设置并标记明显。
- 5)建筑垃圾转运调配场内应设置场区道路,连接场内各堆放区与场外市政道路。
- 6) 建筑垃圾转运调配场应配备装载机、推土机等作业机械,配备机械数量应与作业需求相适应。

7)生产管理区应设置在分类堆放区的上风向,宜设置办公用房等设施。中、大型规模的中转调配场宜设置作业设备、运输车辆的维修车间等设施。

3、规划布局

远期至2035年舒城县共拟建设32处建筑垃圾调配场,具体明细见下表。

序号	单位	数量	规划布局情况
1	城关镇	0	直送城区建筑垃圾分拣中心
2	干汊河镇	1	原干汊河镇垃圾中转站
3	万佛湖镇	1	龙河村胜利组原 S317 省道旧加油站旁
4	张母桥镇	1	位于长堰村部对面空地 (原张母桥中学闲置地块)
5	山七镇	1	位于集镇污水处理厂附近空地处
6	晓天镇	3	1、和岗村月行组路口;2、和岗村马道组二桥上路边;3、三元村张屋组105国道边老砖厂
7	河棚镇	1	位于黄河村石冲组路边
8	桃溪镇	3	桃溪镇3个(红光卫庄垃圾中转站、G206 和襄高速高架桥下、 白鱼喻圩)
9	千人桥镇	1	位于千人桥镇文化广场东南侧
10	杭埠镇	1	位于杭埠镇东盛北路基督教堂对面
11	百神庙镇	3	1、位于百神庙镇街道中心公园边;2、位于周公渡街道杨圩大桥旁;3、白马凼老街北边。
12	南港镇	2	1、南港宾馆后垃圾中转站;2、南港治超站后面
13	舒茶镇	2	1、舒茶镇 206 国道集镇污水处理厂。2、龙王庙村三坝组垃圾中转站边
14	汤池镇	2	1、西沙埂村中石化加油站对面空地;2、三江村环湖路边岗头组
15	棠树乡	2	1、西塘村垃圾收集点旁;2、在洪院村垃圾收集点旁。
16	高峰乡	1	位于古塘村与陶湾村交界沿河组
17	阙店乡	1	位于阙店乡阙店村部往北 200 米处
18	柏林乡	1	位于国道 237 恒创公司院内
19	春秋乡	1	位于春秋乡仓房村楼塘组舒棚公路边
20	五显镇	2	1、位于上河村龚家冲口大桥西边; 2、韦洼村三房组 G346 国 道南边
21	庐镇乡	1	位于庐镇乡二河村沿237省道大桥旁
22	开发区	1	位于纬一路与经一路交口东侧
	合计	32	

4、选址要求

依据"多规合一"要求,结合《舒城县国土空间总体规划(2021-2035年)》中的"三区三线",用地选址禁止占用永久基本农田和生态红线等,建筑垃圾转运调配场的用地性质可以为临时性用地。县自然资源和规划局应当会同行政审批部门、住房和城乡建设局、城市管理局、生态环境局等相关部门商定建筑垃圾转运调配场选址。

5、运营与维护

- (1) 应建立健全各项管理制度,设立专职管理人员,负责日常监管,督促生产运营管理。
 - (2) 转运车辆进出应执行"一车一单"的制度,经核准证件后,才可放行。
 - (3) 无关人员不得进入场内进行捡拾废品等活动。
 - (4) 应配备与施工规模相适应的分类堆放区和作业人员。
 - (5) 应配备相应的作业机械、照明、消防、降尘、降噪、排水等设施设备。
 - (6) 应定期保养和及时维修站内设备设施。
- (7) 进场的建筑垃圾应根据工程渣土、工程泥浆、工程垃圾、拆除垃圾和 装修垃圾的标准分类堆放,并设置明显的分类堆放标志。
- (8) 转运调配场内堆放时可采取室内或露天方式,露天堆放的建筑垃圾应及时遮盖。

第五章 建筑垃圾利用及处置规划

第22条 处置方式

1、无害化处置

- (1) 工程回填: 工程回填是指利用路基施工、桩基填料、地基基础、土地平整、堆山造景、综合管廊、矿山石场治理等生态修复工程项目回填消纳建筑垃圾,主要是消纳工程渣土。
- (2) 固定消纳:由于建筑垃圾属于惰性无机物,因此可采用陆域安全堆填进行无害化处置,也是目前最为成熟、最主要的处理方法,是一类保障设施;将固定消纳场定位为服务政府重大建设工程的应急储备设施或建筑垃圾中暂时无法综合利用的惰性组分的兜底设施。

2、资源化利用

- (1)制造再生建材:可通过对建筑垃圾科学的分类、分拣、破碎及筛分后,结合各种产品质量要求,加入适量的水泥和添加剂,生产出各种新型环保建材,实现循环经济。
- (2) 泥砂分离:可将工程渣土分选分离生产出砂粒(含泥量一般需小于3%),用作建筑用砂(应符合国家标准《建设用砂》
- (GB/T14684-2022)等相关标准要求),还可将工程渣土分离出的黏土与园林垃圾腐殖质土混合制备园林种植土,实现固废协同资源化利用。
- (3) 环保烧结:可将工程渣土经过环保烧结工艺处理,生产出符合《环保烧结普通砖》(GB/T5101-2017)、《环保烧结空心砖和

空心砌块》(GB/T13545-2014)等标准的烧结制品,实现建筑垃圾资源利用最大化。

建筑垃圾处置方式规划表

序号	建筑垃圾 类别	排放去向规划(指导性)	主要处理方式
1	工程垃圾	资源化处理设施、原位 资源化处理、临时消纳 场	固定式资源化处理+移动式资源化处理,无资源化处理条件的填埋消纳
2	拆除垃圾	资源化处理设施、原位 资源化处理、临时消纳 场	固定式资源化处理+移动式资源化处理,无资源化处理条件的填埋消纳
3	装修垃圾	临时消纳场、资源化处 理设施	填埋消纳+资源化处理
4	工程渣土	可控自行调配、临时消 纳场	综合利用+填埋消纳
5	工程泥浆	临时消纳场、原位处理 并综合自用	填埋消纳,有条件的可以进行综合利 用

第23条 处置方案

工程渣土、工程泥浆可用于无害化堆填处置、域内平衡、跨区域调剂平衡、生态修复利用、场地平整和其他资源化利用。工程泥浆应在产生工程泥浆的现场采用压滤的处理工艺,将固液相分开。液相检测达标后排放,不达标需重新处理;固相尽量用于原位回填,无法回填的部分运往渣土消纳场处置。

装修垃圾及工程垃圾可用于资源化利用和无害化堆填处置。 拆除垃圾可用于资源化利用和无害化堆填处置。

本次规划引导建筑垃圾在源头减量的基础上优先考虑资源化利 用,处理及利用优先次序宜按下表:

建筑垃圾处置和利用优先次序

类型	处置和利用优先顺序
工程垃圾、装修垃圾	资源化利用、无害化堆填
拆除垃圾	资源化利用、无害化堆填

工程渣土、工程泥浆

综合利用(域内土方平衡、生态修复利用、跨区调剂 平衡)、无害化堆填、资源化利用

第24条 处置规划

1、建筑消纳场和建筑垃圾资源化利用处置场选址原则

- 1) 应符合《舒城县国土空间总体规划(2021-2035 年)》以及国家现行有关标准的规定。
- 2) 应与当地的大气防护、水土资源保护、自然保护及生态平衡 要求相一致。
- 3) 工程地质与水文地质条件应满足设施建设和运行的要求,不 应选在发震断层、滑坡、泥石流、沼泽、流沙及采矿陷落区等地区。
- 4) 应交通方便,运距合理,并应综合考虑服务区域内建筑垃圾 存量及增量估算情况、建筑垃圾收集运输能力,资源化利用厂还应考 虑产品出路、预留发展等因素。
 - 5) 应有良好的电力、给水和排水条件。
- 6)应位于地下水贫乏地区、环境保护目标区域的地下水流向下游地区及夏季主导风向下风向。
- 7)厂址不应受洪水、潮水或内涝的威胁。当必须建在该类地区时,应有可靠的防洪、排涝措施,其防洪标准应符合现行国家标准《防洪标准(GB50201-2014)的有关规定。
- 8) 宜在城市规划建成区外设置,应选具有自然低洼地势的山坳、 采石场废坑、符合防洪要求、具备运输条件、土地及地下水利用价值

低的地区,并不得设置在水源保护区、地下蕴矿区及影响城市安全的区域内,距居民居住区及人畜供水点不应小于0.5千米(不含0.5千米)。

2、建筑垃圾消纳场规划

规划在南港路与梅河东路交口东北角设置一处建筑垃圾消纳场。占地面积7.13公顷。基本情况如下:

- (1) 总用地面积: 7.13 公顷(107亩)。
- (2) 拟选厂址: 南港路与梅河东路交口东北角。
- (3) 用地性质: 耕地、林地、工业用地、陆地水域。
- (4) 服务范围: 舒城县县域
- (5) 规划选址红线图如下:

3、建筑垃圾资源化利用处置场规划

现状舒城县建筑装潢垃圾分类处置资源化利用中心,位于舒城县城关镇舒茶路东侧,主要处理工程垃圾与装修垃圾。处理规模约8万吨/年。

规划新建一处资源化利用中心,位于舒城县污水处理厂东侧,建筑垃圾处理规模达到约20万吨/年。基本情况如下:

- (1) 总用地面积: 1.62 公顷 (24 亩)
- (2) 拟选厂址: 舒城县污水处理厂东侧, 现状城东生活垃圾中转站。
 - (3) 用地性质: 公用设施用地。
 - (4) 处置规模: 20 万吨/年
 - (5) 服务范围: 舒城县县域
 - (6) 规划选址红线图如下:

第25条 建筑垃圾存量治理规划

1、建立健全顶层制度设计

(1) 专项规划编制

专项规划: 充分与市级建筑垃圾污染环境防治工作规划相衔接, 严格落实规划目标指标要求, 并将各县建筑垃圾污染环境防治工作规

划作为本县建筑垃圾治理的有效指导依据。

(2) 出台建筑垃圾管理办法

舒城县城管局已制定《舒城县城区建筑装潢垃圾处置管理实施办法》,明确局属各单位的工作任务和工作要求。

2、制定完善治理工作机制

(1) 摸底排查

舒城县及所辖各乡镇按属地管理原则,全域开展地毯式排查,建立建筑垃圾乱堆乱倒排查点位清单;根据排查点位位置、堆体规模、组分、周边环境、水文地质条件及侧向和底部渗透等情况,评估污染程度、风险等级,区分"稳定""存在安全隐患"两大类,建立问题鉴定清单。

(2) 全面治理

根据鉴定结果,一点一策制定整治方案,分类施策,明确整治目标任务、具体措施、责任要求和进度安排,建立整治任务清单;按照治理一处、核实一处、销号一处的要求,严格对标开展建筑垃圾治理成效复核和销号工作。

(3) 巩固提升

舒城县及所辖各乡镇应进一步细化部门职责分工,建立健全督察 检查、联合执法机制,健全完善建筑垃圾长效管理"四清一责任"工作 机制。

第六章 建筑垃圾监督管理规划

第26条 部门职责

根据《舒城县城区建筑装潢垃圾处置管理实施办法》,舒城县城管执法部门是建筑垃圾管理的行政主管部门,具体负责建筑垃圾处置工作。县发展改革(物价)、住房城乡建设、交通运输、国土资源、环境保护、市场监管、农机、公安交管等部门履行各自职责,相互配合,共同做好建筑垃圾运输及堆放管理工作。

- 1、县城管执法部门会同有关部门制定和实施建筑垃圾处置核准制度,负责对建设单位、施工单位或从事建筑垃圾运输单位的建筑垃圾运输及堆放实施方案进行核准,监督建筑垃圾运输、倾倒、堆放、利用等处置活动,监管建筑垃圾堆放场所。
 - 2、县发展改革(物价)部门负责制定建筑垃圾处置收费标准。
- 3、县住房城乡建设部门负责会同城管执法、国土资源部门编制建筑垃圾堆放场所规划,合理布局堆放场所,做到与城市建设需要相适应:负责建筑施工工地现场管理和监督,督促建设单位、施工单位在开工前向城管执法部门申报建筑垃圾运输及堆放实施方案并落实责任。
- 4、县交通运输部门负责办理建筑垃圾运输企业《道路运输经营 许可证》和建筑垃圾运输车辆《道路运输证》,配合城管执法部门实 施建筑垃圾运输核准和监督管理,依法查处车辆非法营运行为。
 - 5、县国土资源部门配合城管执法部门加强对建筑垃圾堆放场所

的监管。

- 6、县环境保护部门负责建设项目环评中应有建筑施工扬尘防治的内容,对建筑垃圾运输及堆放场所实施统一环境监察监测。
 - 7、县市场监管部门负责建筑垃圾运输企业的注册登记工作。
- 8、县农机部门负责对农机车的管理以及驾驶人员的安全教育, 配合城管执法部门实施建筑垃圾运输核准和监督管理,协助有关部门 查处违规运输建筑垃圾的驾驶人员。
- 9、县公安交管部门负责对建筑垃圾运输车辆进行道路交通安全管理,配合城管执法部门实施建筑垃圾运输核准和监督管理工作,依法查处违反道路交通法规的运输车辆和人员。

第27条 制度落实与建设

为加强建筑垃圾管理,保护和改善生态环境,持续优化建筑垃圾的处置核准(转运、资源化利用),有效评估和统计建筑垃圾产量,强化核准和监管,压实建筑垃圾的源头减量、收运管理和处置管理责任,促进建筑垃圾资源化产业发展,建立相应管理制度。

1、污染者负责制度

按照"谁产生、谁污染、谁负责"的原则,产生建筑垃圾的单位和个人具有规范清运和处置的主体责任,需缴纳相关清运处置费。在现有的基础上,逐步形成完整的污染者付费制度。如制定相关收费标准,建筑、拆迁工程按照建筑面积或产量收取清运费和处置费,居民装修按照重量或收运次数收取相关费用等。

2、生态补偿机制

按照"谁导出,谁补偿;谁导入,谁受偿"的原则,建立建筑垃圾导出区域对建筑垃圾导入区域的长效环境补偿机制,实行生态补偿机制,制定按量定补方案,尤其是对建筑垃圾消纳场所在乡、镇进行生态补偿。该补偿资金的使用原则是:专款专用、定向使用,主要用于环境质量改善、基础设施改善及居民民生改善三大方面。

3、源头责任机制

明确规定建设单位为工地建筑垃圾管理处置的主要责任人,对于不执行相关规定的工地,一律追究建设单位的责任。施工单位要切实履行市容环卫责任,落实施工工地保洁措施。工程完工应及时清理现场,平整场地和修复破损路面,保证建筑工地出入口及工地周边环境整洁。工地要安装扬尘监测监控视频设备,并联网接入城管部门建筑垃圾监控系统,依托信息管理系统,对施工工地实行实时监管。

建筑垃圾源头管控首先从源头建设项目的信息填报入手,建立健全建筑垃圾的管理台账,摸清底数和实情。规范建设项目基本信息、参建单位、运输企业、处置企业信息、垃圾种类及产量、现场分类管理、统计台账管理、污染防治与清运组织策略、末端处置措施等内容的编写要求,让建筑垃圾处置核准制度、处理方案备案制度真正发挥作用。及时更新建筑垃圾处置核准制度、处理方案备案制度真正发挥作用。及时更新建筑垃圾的排放核准信息和数据,为建筑垃圾全过程跟踪管理提供保障,努力实现源头排放核准数据与运输、处置数据串联一致。强化建筑垃圾的源头排放管理。

4、运输监督机制

从事建筑垃圾运输的企业应具有合法的道路运输证、车辆行驶证 以及建筑垃圾主管部门规定的自有运输车辆数量、核载吨位及密闭化、 分类运输的各项要求,应逐步完善车辆定位系统和视频监视装置建筑 垃圾运输车的年度常规检验由城市机动车检验机构结合机动车辆安 全技术检验(包括新车上牌检验)、营运车辆综合性能检验中相关检 验项目进行。

建筑垃圾主管部门对申请建筑垃圾运输行政许可的企业经营者 以及取得建筑垃圾运输行政许可的企业中的从业人员(包括车辆驾员、 现场作业人员等),应进行相关法规、标准及操作规程方面的培训。 运输单位应按核准的路线和时间行驶至批准的地点处理处置建筑垃圾,运输过程中不得超重、超载、超速,对发生人员死亡道路交通事故的运输车辆驾驶员和运输单位,应取消或限制其从事建筑垃圾运输资质,并承担相应责任。

5、联合执法制度

各相关部门要按照各自职能,对建筑垃圾产生源头、运输过程、 消纳渠道等各个环节落实严密的措施,实施严格的监管。由县人民政 府牵头,建立联席会议制度,建成由县政府主要领导负责、多部门组 成的联动机制。加强工作衔接,互通管理信息,强化日常管理,做到 既各司其职,又协同共管。

6、投诉举报制度

进一步完善相关机制制度建设,设立专门的投诉举报窗口或平台,鼓励群众对建筑垃圾偷倒乱倒、超重运输等行为进行监督,并对社会公众投诉举报的违法违规行为依法进行审查处理。违法违规行为一经查实,可依据法律采取批评教育、罚款等措施,情节严重且屡教不改的,可将责任单位名称、联系电话、责任人等信息,通过公众媒体向社会公布,并对提供有效举报信息的群众设立奖金。

第28条 智能管理信息系统规划

舒城县建筑垃圾全过程监管平台,通过实时监控、全程定位、电 子围栏等信息化手段,实现对施工工地、运输车辆及消纳场全过程监 管,将建筑垃圾治理监管工作从传统形态监管向数据精准监管转变, 整合源头建立多点监管、在线联动、实时追踪、全域管控、闭环处理、 失信惩戒一体化的智慧管理模式。通过建设,打造出大数据支撑、网 络化共享、智能化协作的可复制、可推广的建筑垃圾全流程监管平台, 全面提升建筑垃圾处置管理能力。

- 1、实现实时跟踪。运用北斗系统平台及北斗车载终端设备实现对建筑垃圾运输车辆管理,通过对车辆监控与识别,增强车辆信息快速、准确、可靠、统一的管理能力,并对渣土车动态信息实行动态跟踪、监控、识别、管理等功能,提供统一的服务。
- 2、实现在线审批。分配各运输企业系统账号,每日开证由运输企业通过系统申报转运信息(车辆、出土点、消纳场、路线信息),城管部门在线审批,符合出土要求的通过后由系统将电子核准证自动

下发至当日建筑垃圾清运车辆。

- 3、实现快速查处。在主城区实行"一级监督、分级指挥、按责处置"的管理机制,建立统一的建筑垃圾全流程监管平台,确保在建筑工地、道路施工现场、居住小区等建筑垃圾的产生源头能及早发现、督促整改和避免违章情况的发生;针对不按规定路线转运;转运过程篷布未密闭抛洒滴漏;不按指定场地违规倾倒;不遵守每日规定作业时间违规作业;城区转运超速、危险驾驶等行为进行实时监管,确保执法部门对运输车辆清运过程的违章能尽早发现、即时取证并现场上报相关部门、及时处理和处罚,实现建筑垃圾运输源头和过程管理并进。
- 4、实现信息化管理。以数据为依据,实时监控管理车辆的运行情况,用量化数据评定企业的服务质量及服务资格,实现城市建筑垃圾运输车辆运行、识别、服务、安全、遵章的信息化管理。

第七章 建筑垃圾资源化利用产业发展规划

第29条 建筑垃圾资源利用模式

建筑垃圾资源处理方式主要分为直接利用和资源化再生利用两种模式。

建筑垃圾直接利用是指可以直接回收利用或通过简单的分拣就能直接回收利用的方式,包括分类回收、一般性回填等。

建筑垃圾资源化再生利用是指将建筑垃圾通过加工处理转化为有用物质的利用方式,包括将建筑垃圾用于生产再生骨料、再生砖、再生砌块、再生景观石、再生混凝土、再生稳定碎石、再生预拌砂浆等。

第30条 建筑垃圾直接利用

1、工程渣土、工程泥浆的直接利用

工程渣土的利用的主要方式有:堆土造景、采石场/山体复绿、复垦耕地、公路路基等。

2、工程垃圾、拆除垃圾的直接利用

工程垃圾、拆除垃圾中主要为混凝土、砖块等,对于它们的利用方法主要有:

- 1) 用作渣土桩填料。
- 2) 用作夯扩桩填料。
- 3) 用于建筑施工工地的围墙、公路防护墙建设等。
- 4) 在城市兴建大型建筑、广场、市政设施时,将其作为回填材料来使用。

3、装修垃圾的直接利用

装修垃圾成分复杂,经过垃圾分类之后才能进行直接利用。其中 主要能够直接利用的材料有砖块、混凝土、竹木、金属等。

第31条 建筑垃圾资源化再生利用

1、再生产品利用总体要求

- 1) 再生产品用于建设项目时应满足相关标准的规定,并应遵循下列原则:
 - ①产品同等性能条件下,鼓励优先采用再生产品。
 - ②建设项目范围内的地面道路和停车场,鼓励优先采用再生产品。
- ③建设项目的基础垫层、围墙、管井、管沟、挡土坡及市政道路的路基垫层等部位,可采用再生产品。
 - ④政府投资的建设项目鼓励优先采用再生产品。
 - 2) 再生材料的使用和管理, 应符合下列规定:
 - ①不同类别、不同粒径的再生材料应分开运输和堆放。
 - ②再生材料和天然材料应分开堆放。
 - ③再生材料的生产原料及使用情况等信息应加以规范记录。
 - ④再生制品应具有清晰的产品标识。

2、再生材料应用要求

①被污染或腐蚀的建筑垃圾不得用于制备再生材料,再生材料的放射性应符合现行国家标准《建筑材料放射性核素限量》GB65660的规定。

- ②用于生产混凝土的再生粗骨料,其颗粒级配、性能指标应符合现行国家标准《混凝土用再生粗骨料》GB/T25177的规定。
- ③用于生产混凝土和砂浆的再生细骨料,其颗粒级配、性能指标应符合现行国家标准《混凝土和砂浆用再生细骨料》GB/T25176的规定。
- ④用于生产沥青混合料和道路用无机混合料的再生骨料,其颗粒级配、性能指标应符合国家现行标准《再生沥青混凝土》GB/T25033、《道路用建筑垃圾再生骨料无机混合料》JC/T2281的规定。
- ⑤用作混凝土掺合料的活性再生粉料,其性能指标应符合现行行业标准《废混凝土再生技术规范》SB/T11177的规定。
- ⑥再生骨料可用于生产预拌混凝土、砂浆、砌块、砖、混凝土预制构件等,并应符合现行行业标准《再生骨料应用技术规程》JGJ/T240的要求。
- ⑦再生骨料用作混凝土梁、板、柱、剪力墙、楼梯的原材料时, 其性能指标应符合国家现行标准《混凝土结构设计规范》GB50010、 《混凝土结构耐久性设计规范》GB/T50476 和《普通混凝土配合比设 计规程》JGJ55、《再生骨料混凝土耐久性控制技术规程》CECS385 等的规定。
- ⑧再生骨料用作城市透水路面、停车场等透水混凝土的原材料时, 其性能指标应符合现行行业标准《再生骨料透水混凝土应用技术规程》 CJJ/T253 的规定。

3、再生制品应用要求

- ①再生骨料混凝土应用于工程结构时,应满足国家现行标准《工程施工废弃物再生利用技术规范》GB/T50743、《再生骨料应用技术规程》JGJ/T240的相关规定。
- ②再生混合料应用于城镇道路时,应满足现行行业标准《城镇道路沥青路面再生利用技术规程》CJJT43、《城镇道路工程施工与质量验收规范》CJJ1的规定。
- ③非烧结再生制品,包括混凝土实心砖、混凝土多孔砖、混凝土空心砖、普通混凝土小型空心砌块、透水路面砖和透水路面板等,其工程应用应符合下列规定:

用于园林景观道路、非重载道路或广场时,其产品性能应分别符合国家现行标准《混凝土实心砖》GB/T21144、《承重混凝土多孔砖》GB25779、《非承重混凝土空心砖》GB/T24492、《普通混凝土小型砌块》GB/T8239、《透水路面砖和透水路面板》GB/T25993等的规定。

非烧结再生制品用于墙体时,其产品性能还应符合国家现行标准《混凝土小型空心砌块建筑技术规程》JGJT14、《混凝土砖建筑技术规范》CECS257、《混凝土多孔砖建筑技术规程》DB33/1014的规定。

④烧结再生砖和砌块可用于非承重墙体,其产品性能应符合现行国家标准《烧结多孔砖和多孔砌块》GB13544、《烧结空心砖和空心砌块》GB/T13545的规定。

- ⑤再生陶粒和陶砂可用于园林绿化。用于填充墙和建筑墙体、楼(屋)面隔热保温层的原材料时,其质量及性能应符合现行国家标准《轻集料及其试验方法》GB/T17431.1的规定。
- ⑥再生园林种植土可用于通用种植土和草坪土,其质量应符合现行业标准《绿化种植土壤》CJ/T340的规定。

第32条 建筑垃圾产业化运营与管理

1、建筑垃圾产业化运营方法

市场化运作:建筑垃圾源化利用厂的建设需要大量资金,如果仅靠政府资金来建设的话,由于政府的自身财政有限,投资规模难以满足目前的建筑垃圾处理需求;与此同时,建筑垃圾处理公司由于其自身的管理问题和运行体系问题,使得公司的运营成本较高。因此,要促进舒城县建筑垃圾处理产业的发展,必然要引入多方的资源和多种管理发展模式,但由于建筑垃圾处理行业具有特殊的行业性质,必须考虑其自身具有的垄断性、有限竞争性和公益性的特点。综合以上因素,需要对舒城县建筑垃圾源化利用厂采用特许经营方式。

2、建筑垃圾处理设施建设模式

- 1) BOT 模式: BOT 模式简单意义上来讲,就是私人投资者在政府的授权下对公共基础设施项目进行投资建造,项目建成后自主运营受益,合同期满后再移交政府的一种资源合理利用的新模式。
- 2) TOT 模式: 政府先建造建筑垃圾源化利用厂然后政府再将建造好的建造垃圾处理厂以 TOT 的模式承包给投资者运营管理一定的

时间,投资人通过承接政府已建好的垃圾处理厂取得受益,收回投资,到合同期满后,投资者再将建筑垃圾源化利用厂移交给政府。

3) PPP 模式: 指公共部门通过与私人部门建立伙伴关系来提供公共产品或服务的一种方式。

第一章 环境保护与安全卫生

第33条 大气环境保护措施

目前舒城县建筑垃圾在的产生、运输、处置三个阶段均会产生大量的扬尘,对区域内的大气环境造成不同程度污染。对大气环境保护主要采取以下防治措施:

- (1) 在建筑施工场地进行"三通一平"、开挖、回填土方前必须到相关部门办理工程弃土报建手续,实施时应严格执行。
- (2)建筑工地实行封闭管理,并应采用硬质围挡。围挡设置要达到安全、稳固、美观要求,城市主干道围挡应设置不低于 2.5 米,次要道路或其它区域应不低于 1.8 米。施工现场道路、加工区和生活区地面应进行硬化。建成区内新开工工程出入口必须使用可移动装配、周转使用的冲洗平台及清洗池,冲洗平台应设置于工地大门内侧车辆行进路线上,长度不小于 8 米,宽度不小于 3.5 米,其周边设置排水沟,排水沟与沉淀池相连,并按规定处置泥浆和废水排放。车辆进出必须通过冲洗平台及清洗池,保持出场车辆清洁,不得带泥污染市政道路。
- (3) 工程泥浆陆上运输应采用密闭罐车,水上运输应采用密闭分隔仓。其他建筑垃圾陆上运输宜采用密闭厢式货车,水上运输宜采用集装箱。建筑垃圾散装运输车或船表面应有效遮盖,建筑垃圾不得裸露和散落。
 - (4) 建筑垃圾运输车厢盖和集装箱盖宜采用机械密闭装置,开

- 启、关闭动作应平稳灵活,车厢与集装箱底部宜采取防渗措施。
- (5) 建筑垃圾运输工具应容貌整洁、标志齐全,车厢、集装箱、车辆底盘、车轮、船舶无大块泥沙等附着物。
- (6)建筑垃圾装载高度最高点应低于车厢栏板高度 0.15m 以上, 车辆装载完毕后,厢盖应关闭到位,装载量不得超过车辆额定载重量。
- (7)转运调配场堆放区可采取室内或露天方式,并应采取有效的防尘、降噪措施。露天堆放的建筑垃圾应及时遮盖。转运调配场可根据后端处理处置设施的要求,配备相应的预处理设施,预处理设施宜设置在封闭车间内,并应采取有效的防尘措施。
 - (8) 建筑垃圾资源化利用厂应符合下列要求:
- 1)厂区中的建筑垃圾原料贮存堆场应保证堆体的安全稳定性,并 应采取防尘措施,可根据后续工艺进行预湿;建筑垃圾卸料、上料及 处理过程中易产生扬尘的环节应采取抑尘、降尘及除尘措施。
 - 2)有条件的企业宜釆用湿法工艺防尘。
- 3)易产生扬尘的重点工序应采用高效抑尘收尘设施,物料落地处应采取有效抑尘措施。
- 4)应加强排风,风垦、吸尘罩及空气管路系统的设计应遵循低阻、 大流量的原则。
- 5)车间内应设计集中除尘设施,可采用布袋式除尘加静电除尘组合方式,除尘能力应与粉尘产生量相适应。
 - (9)资源化处理工程应通过洒水降尘、封闭设备、局部抽吸等

措施控制粉尘污染,并应符合下列规定:

- 1)雾化洒水降尘措施洒水强度和频率根据温度、面积、建筑垃圾物料性质、风速等条件设置。
- 2)局部抽吸换气次数不宜低于6次/h,含尘气体经过除尘装置处理 后,排放应按现行国家标准《大气污染物综合排放标准》

GB16297-1996 规定执打。

- (10) 建筑垃圾填埋场、消纳场应符合下列要求:
- 1)在堆填现场主要出人口宜设置洗车台,外出车辆宜冲洗干净后进人市政道路。
 - 2)作业场所应釆取抑尘措施。
 - (11) 对施工工地、建筑垃圾运输过程中扬尘污染控制管理:
- 1)控制管理目标:随时保持施工现场、道路及周边环境干净、整洁,无扬尘污染。
 - 2)控制管理责任方:施工、运输企业或个人。
 - 3)控制管理要点:
 - ①控制管理责任方需及时划拨使用专款,落实控制扬尘的经费。
 - ②按规范要求,施工现场产生的垃圾及时清运,材料堆放整齐。
- ③土方进出工地时,在洗车池将车辆的车帮和车轮冲洗干净,并做好遮蔽、清洁工作。
- ④施工现场内堆放的水泥、灰土、砂石等易产生尘埃的物料,采取围栏、遮盖等措施防尘。

- ⑤工地上木工机械等易产生粉尘的设备安置在相对封闭的操作棚内,产生的木屑、废料等及时清理。
 - ⑥工地在清扫时,适当洒水或采取其它防尘、吸尘等措施。
 - 4)控制措施:
- ①由控制责任方落实控制扬尘的经费,保证扬尘控制经费专款专用。
 - ②建立扬尘控制责任制及制度,并做好分阶段作业扬尘控制。
- ③控制责任方指定安全文明施工负责人负责施工现场扬尘的管理工作,并建立扬尘控制档案,工作总结、实施方案、会议记录、宣传资料等。
- ④对参加本工程施工作业的所有人员进行保护环境、控制扬尘知识及重要性等有关方面的教育和宣传。扬尘控制措施和承诺的内容在工地四周醒目处进行公示。

对控制扬尘工作的职责进行分解落实,使本工地的扬尘控制制度做到层层落实,控制到位。

- ⑤施工场地已经进行了地面的硬化处理,因施工需要没有硬化的 地方用绿网覆盖或其它措施,使泥土不裸露。临街及临居民小区作业 面用绿色密目安全网进行全封闭处理。
- ⑥施工现场内堆放的水泥等易产生尘埃的物料进行封闭式管理, 不允许露体堆放,灰土、砂石进行可靠围挡,并用绿色密目网随时进 行覆盖。

- ⑦建筑垃圾、工程渣土在 24 小时内不能清运出场的,设置临时堆场,堆场周围进行围挡、遮盖、等防尘措施。散装物料、建筑垃圾在 6m³以上采取密闭清运,施工场地清扫出的建筑垃圾、工程渣土采用袋装或密闭清运。
- ⑧运输车辆驶离工地前,必须将车辆的槽帮和车轮用高压水枪设备冲洗干净,并采取围挡、遮盖等防尘措施。严禁使用压缩空气清理车辆和地面上的泥土。
- ⑨当清理建筑垃圾或废料时,采用洒水并有吸尘措施,不能采用 翻竹底笆、板铲拍打、空压机吹尘等会产生扬尘的方法清理。
- ⑩工程完工30日内,平整工地场地和周围场地,清除积土、堆物并对裸露地面进行临时绿化或用绿网覆盖。

第34条 水环境保护措施

- (1)建筑垃圾处置场、填埋场、消纳场选址不应设在地下水集中供水水源地及补给区;洪泛区和泄洪道。
- (2)为避免产生大的环境事故,建筑垃圾处置场、填埋场、消纳场应该避开以下区域:淤泥区、密集居住区,距公共场所或人畜供水点500米内、距飞机场10公里以内的地区,直接与航道相通的地区,地下水水位与场底垂直距离在1.0米以内的地区。
- (3)由于建筑垃圾处置场、填埋场、消纳场单位面积上的垃圾和覆土数量很大,对地基荷载的要求应大于15千帕/m²,否则填满垃圾后由于重力作用造成沉陷、塌方而破坏防渗衬层,造成垃圾渗滤液渗漏

污染地下水。

- (4)场址最好是独立的水文地质单元,以减少人工防渗投资。
- (5)建筑垃圾填埋场、消纳场地应建设渗滤液导排系统,确保填埋场、消纳场运行期间防渗衬层以上的渗滤液深度不大于 30 厘米。
- (6)建筑垃圾处置场地应设置渗滤液处理设施,以在管理期内对 渗滤液进行处理达标后部分用回喷泵进行回灌,部分排放。
- (7)建筑垃圾中转调配、填埋消纳场、处置场所应有雨、污分流设施,防止污染周边环境。
- (8)建筑垃圾治理建设项目既要防止渗滤液污染地下水,又要防止地下水侵入、浸泡垃圾体而增加污水量,采取有效措施对其做防渗处理,防治污水渗漏对地下水质造成严重污染影响;保护项目拟建场址附近地下水质量满足《地下水质量标准(GB/T14848-2017)》中的标准要求。建筑垃圾治理建设项目选址不应设在地下水集中供水水源地及补给区,场址地及补给区内,如选址地临近地下水集中供水水源地及补给区,场址附近地下水质量满足《地下水质量标准(GB/T14848-2017)》中的IV标准要求。
- (9)严格控制垃圾渗滤液的产生量,对建筑垃圾治理建设项目排放的渗滤液进行处理后达标排放,保证垃圾渗滤液的排放不致使受纳水体的使用功能遭受影响;处理后的渗滤液水质应达到《污水综合排放标准》的标准才可排放,且不得直接排入二级以上生活饮用水地表水源保护区水域中。

- (10)加强水质监测。对建筑垃圾建设项目产生的滤液进行进行检测,监测包括透明度、溶解氧(DO)、氨氮(NH3-N)、氧化还原电位(ORP)等 4 项指标;配合完成黑臭水体水质交叉监测工作。
- (11)建筑垃圾填埋、消纳区应设置地下水本底监测井、污染扩散监测井、污染监测井,应进行水、气、土壤及噪声的本底监测和作业监测,场区封场后应进行跟踪监测直至填埋体稳定。监测井和采样点的布设、监测项目、频率及分析方法应按现行国家相关标准执行。

第35条 噪声环境保护措施

- 1、严格控制施工工地在夜间进行产生环境噪声污染的建设施工。 因生产工艺要求或者特殊需要必须连续作业,确需进行夜间施工的, 必须到建设、环保部门办理《夜间施工许可证》,并在工地进出口悬 挂,公告附近居民,与附近社区、居委会、物业小区居民进行沟通, 求得市民的理解和支持。
- 2、城管、环保等部门将按照建筑施工不同阶段,及时监测检查 建筑施工现场场界环境噪声,督促落实防治措施,对未办理《夜间施 工许可证》或未按照《夜间施工许可证》规定的时间进行施工,产生 噪声污染的,将责令停工,给予警告,可并处一定数额的罚款。
- 3、建筑垃圾收集、运输、处理系统应选取低噪声运输车辆,车辆在车厢开肩、关闭、卸料时产生的噪声不应超过82dB(A)。
- 4、宜通过建立缓冲带、设置噪声屏障或封闭车间控制转运凋配场、填埋场和资源化处理厂噪声。

- 5、噪声大的建筑垃圾资源化处理车间,宜采取隔声罩、隔声间或者在车间建筑内墙附加吸声材料等方式降低噪声。
- 6、建议各施工、运输单位选购低噪声的先进设备,加强对高噪声设备的管理和维护,并做好处置场区绿化工作。同时,运输中车辆应控制车速,减少鸣笛次数。
- 7、造成噪声污染后,经执法部门责令停工而拒不停工的建设单位,执法部门发送《执法建议函》,同时将视情节作出吊销《施工许可证》、降低企业资质等级等处罚,并依法对相关责任人作出处罚。

第36条 土壤环境保护措施

- 1、应当编制土壤污染风险评估报告。主要包括下列内容:主要 污染物状况;土壤及地下水污染范围;风险管控、修复的目标和基本 要求等。
- 2、针对建筑垃圾对土壤带来的污染种类,应做好源头控制,实 行垃圾分类回收,回收可再利用的资源,积极做好渗滤液导排系统和 渗滤液处理设施,严格避免渗滤液流出防渗衬层之类的污染事故发生, 做好填埋、消纳区植被覆盖,减轻污染。
- 3、建筑垃圾治理建设项目各类涉及土地利用的规划和可能造成 土壤污染的建设项目,应当依法进行环境影响评价。环境影响评价文 件应当包括对土壤可能造成的不良影响及应当采取的相应预防措施 等内容。
 - 4、建立土壤污染隐患排查制度,保证持续有效防止有毒有害物

质渗漏、流失、扬散;进行土壤污染状况监测和定期评估,制定、实施自行监测方案,并将监测数据报生态环境主管部门。

- 5、严格控制有毒有害物质排放,土壤污染重点监管站(点)应 当对监测数据的真实性和准确性负责,发现土壤污染重点监管单位监 测数据异常,应当及时进行调查。并按年度向生态环境主管部门报告 排放情况。
- 6、建筑垃圾产生源头,如拆除设施、设备或者建筑物、构筑物的区域,应当采取相应的土壤污染防治措施。
- 7、发生突发事件可能造成土壤污染的,地方人民政府及其有关部门和相关企业事业单位以及其他生产经营者应当立即采取应急措施,防止土壤污染,并依照法律法规做好土壤污染状况监测、调查和土壤污染风险评估、风险管控、修复等工作。
- 8、禁止向农用地排放重金属或者其他有毒有害物质含量超标的污水、污泥,以及可能造成土壤污染的建筑垃圾等。
- 9、对不符合法律法规和相关标准要求的,应当根据监测结果,要求污水集中处理设施、固体废物处置设施运营单位采取相应改进措施。
- 10、风险管控效果评估、修复效果评估活动,应当编制效果评估报告。效果评估报告应当主要包括是否达到土壤污染风险评估报告确定的风险管控、修复目标等内容。风险管控、修复活动完成后,需要实施后期管理的,土壤污染责任人应当按照要求实施后期管理。

- 11、实施风险管控、修复活动,应当因地制宜、科学合理,提高 针对性和有效性。实施风险管控、修复活动,不得对土壤和周边环境 造成新的污染;风险管控、修复活动中产生的废水、废气和固体废物, 应当按照规定进行处理、处置,并达到相关环境保护标准。
- 12、修复施工单位转运污染土壤的,应当制定转运计划,将运输时间、方式、线路和污染土壤数量、去向、最终处置措施等,提前报 所在地和接收地生态环境主管部门。
- 13、未达到土壤污染风险评估报告确定的风险管控、修复目标的建设用地地块,禁止开工建设任何与风险管控、修复无关的项目。
- 14、建筑垃圾治理建设项目用地用途变更为住宅、公共管理与公共服务用地的,变更前应当按照规定进行土壤污染状况调查。
- 15、建筑垃圾治理项目用地和周边环境用地土壤保护还应满足《中华人民共和国土壤污染防治法》和其他法律法规的相关规定。

第37条 水土流失、地质灾害防治措施

- 1、建筑资源化利用和填埋处置工程选址的工程地质与水文地质 条件应满足设施建设和运行的要求,不应选在发震断层、滑坡、泥石 流、沼泽、流沙及采矿陷落区等地区。
- 2、加强建筑垃圾排放监管工作,对因职能部门监管不到位,致 使因建筑垃圾造成地质灾害事故发生的,要追究部门负责人的责任。
- 3、应重点加强对建筑垃圾处置场、消纳场水土保持措施的监督 管理,要坚持"以防为主,防治结合"方针,努力防控灾害造成的损

失。

- 4、落实好《地质灾害防治条例》,认真将《地质灾害防治条例》贯穿于建筑垃圾处置场、消纳场的选址、建设和运营工作的始终。
- 5、建筑垃圾处置区、消纳区应根据规划限高、地基承载力、车辆作业要求等因素,合理确定分层厚度、堆高高度、边坡坡度.并应进行整体稳定性核算。
- 6、建筑垃圾消纳场雨期作业时,应采取措施防止地面水流人回填点内部,并应避免边坡塌方。

第二章 近期规划实施计划

第38条 近期建设内容

近期各类建筑垃圾处理设施建设内容如下:

1、建筑垃圾资源化利用厂

根据舒城县建筑垃圾量预测,规划新建一处资源化利用中心,位于舒城县污水处理厂东侧,建筑垃圾处理规模达到约20万吨/年。

近期(2027年)舒城县建筑垃圾资源化利用厂一览表:

总用地面 积	拟选厂址	用地性质	服务范 围	处置规 模
1.62 公顷	舒城县污水处理厂东侧,现状城	公用设施	舒城县	20 万吨
	东生活垃圾中转站	用地	县域	/年

2、建筑垃圾消纳场

根据舒城县建筑垃圾量预测,规划在南港路与梅河东路交口东北角设置一处建筑垃圾消纳场。占地面积7.13公顷。

近期(2027年)舒城县建筑垃圾消纳场一览表:

总用地面 积	拟选厂址	用地性质	服务范围
7.13 公顷	南港路与梅河东路交口 东北角	耕地、林地、工业用地、陆地 水域	舒城县县 域

3、建筑垃圾转运调配设施

规划近期(2027年)拟建20处建筑垃圾调配场。

近期(2027年)舒城县建筑垃圾转运调配场一览表:

单位	数量	规划布局情况
干汊河镇	1	原干汊河镇垃圾中转站
万佛湖镇	1	龙河村胜利组原 S317 省道旧加油站旁
张母桥镇	1	位于长堰村部对面空地(原张母桥中学闲置地块)

山七镇	1	位于集镇污水处理厂附近空地处
晓天镇	1	和岗村月行组路口
河棚镇	1	位于黄河村石冲组路边
桃溪镇	1	红光卫庄垃圾中转站
千人桥镇	1	位于千人桥镇文化广场东南侧
杭埠镇	1	位于杭埠镇东盛北路基督教堂对面
百神庙镇	1	位于百神庙镇街道中心公园边。
南港镇	1	南港宾馆后垃圾中转站
舒茶镇	1	206 国道集镇污水处理厂
汤池镇	1	西沙埂村中石化加油站对面空地
棠树乡	1	西塘村垃圾收集点旁
高峰乡	1	位于古塘村与陶湾村交界沿河组
阙店乡	1	位于阙店乡阙店村部往北 200 米处
柏林乡	1	位于国道 237 恒创公司院内
春秋乡	1	位于春秋乡仓房村楼塘组舒棚公路边
五显镇	1	位于上河村龚家冲口大桥西边
庐镇乡	1	位于庐镇乡二河村沿 237 省道大桥旁
合计	20	

第八章 保障措施和实施建议

第39条 保障措施

1、加强法律、法规建设,完善监督管理体系:加强建筑垃圾消纳管理、处置及综合利用等方面的法律、法规及实施细则,使建筑垃圾管理工作有法可依,有章可循。

2、强化执法和过程管理

加强对核准事项进行监督管理,对施工单位是否存在将建筑垃圾交给个人或者未经核准的运输单位清理运输处置进行核查,对运输单位是否按照核准事项要求实施运输活动进行监督。加强巡查力度。对乱倒建筑垃圾的违法行为进行处罚时,要求违法单位或个人对建筑垃圾进行自行清理。并教育其树立遵纪守法行为准则,责令违法单位或个人对违法行为造成的后果采取补救措施,即将违法倾倒的建筑垃圾清理干净,并运送到指定消纳场所填埋,减少违法行为造成的环境和社会危害。

3、技术保障措施

(1) 建立和完善技术标准与评估体系

建筑垃圾处理技术适用性不仅取决于技术本身,而且取决于经济适用条件和环境标准要求。目前,我国建筑垃圾资源化技术的技术标准体系还不够健全,建立完善的建筑垃圾处理技术标准体系和评估体系可以客观地评价各种处理技术的水平,指导并促进舒城县建筑垃圾处理的健康发展。

(2) 组织技术创新,解决关键技术问题

针对建筑垃圾处理存在的关键技术问题,组织技术创新、示范和推广应用,组织实施关键技术与装备国产化示范工程,不断提高建筑垃圾资源化技术水平。

4、资金保障

(1) 明确政府责任, 加大政府投资

明确政府在建筑垃圾管理中的责任,强调建筑垃圾管理是政府理 应为市民提供的公共服务之一。在建筑垃圾处理实施市场化运营的同 时,应继续坚持政府作为建筑垃圾管理主要投资人的角色,加大政府 投入资金的力度。

(2) 通过市场化运营机制拓展资金来源

在确立政府主要投资人的基础上,可通过市场化经营机制拓展资金来源,特别是在处理设施的建设投资方面,应多渠道、多层次的筹集资金,改变单一的资金来源。同时完善投资政策,本着"谁投资,谁收益"的原则,充分发挥市场作用,加快建筑垃圾处理产业化进程。

第40条 实施建议

1、纳入规划统一管理平台

将建筑垃圾处理设施纳入市规划统一管理平台,可以有利于站点 规划用地的管理控制,减少与相关规划的矛盾,协调建筑垃圾处理设 施用地与其他建设用地的关系,切实保障建筑垃圾处理设施建设用地。

2、与时俱进,建设信息化管理平台

- (1) 建立健全的建筑垃圾管理信息平台
- (2) 建立数字化城市管理信息系统

3、多方配合,实现源头减量化

结合舒城县实际情况,规划建议采取以下措施以推进建筑垃圾源头减量工作:

- (1) 政府制定相关政策,推行绿色建筑设计。在建筑物的设计过程中,考虑提高建筑物的耐久性,采用尽量少产生建筑垃圾的结构设计,使用环保型建筑材料;
- (2)政府加强监督,推广绿色施工管理。优先考虑工程区域内 挖填土石方平衡。规范建筑垃圾现场分类管理,从源头对建筑垃圾进 行分类收集,推行建筑废料回收利用,引入移动式再生建材生产线, 有效减少建筑垃圾排放总量。

4、加快规划建设处置设施

根据舒城县城市发展规划,合理规划布局及建设建筑垃圾处理设施。摸清本区域建筑垃圾产生现状,科学评估建筑垃圾发展趋势,按照就地、就近处置原则,综合考虑建筑垃圾产生量及分布、运输半径、环境保护等因素,合理规划布局,因地制宜统筹推进建筑垃圾转运、消纳和资源化利用设施建设,提升处理能力,满足各类建筑垃圾的处理需求。

5、投资方式多样化, 拓宽建设途径

建筑垃圾处理设施建设模式建议结合实际情况, 拓宽渠道, 可考

虑采用 PPP、特许经营等方式,鼓励社会资本投入建筑垃圾产业,形成投资主体多元化、投资方式多样化、投资机制市场化的投融资体制,走社会化建设、社会化管理的道路。

6、规范化建设和管理

- (1) 具体项目实施阶段,项目建设应遵守工程建设项目的相关流程。
- (2)根据相关规范建设建筑垃圾处理设施,满足绿地率以及防护林带的建设要求,减少噪声、扬尘等影响。消纳场在满容后应通过绿化美化设施减少对周边环境影响。
- (3)相关部门应进一步完善建筑垃圾处理设施管理制度,加强 日常管理,确保建筑垃圾处理设施规范运行。对违法设置的建筑垃圾 处理设施要坚决予依法查处。
- (4)建筑垃圾处理设施运营单位必须对运入场内的建筑垃圾进行监视,不得接收禁止入场的废物。
- (5)应加强对建筑垃圾处理设施周边和出入口环境卫生的管理和监督。出入口应设置相应的冲洗设施、排水设施和沉淀设施,运输车辆出场时,必须经过除泥、冲洗等保洁措施,防止车辆带泥污染道路。

7、政策引导、扶持,大力发展建筑垃圾资源化利用

(1) 政策引导

为建筑垃圾综合利用制订法规,制定生产、销售、使用建筑垃圾

资源化产品的优惠政策,鼓励企业利用建筑垃圾生产建筑材料和进行再生利用,鼓励建设单位、施工单位优先采用建筑垃圾资源化产品。

(2) 政府扶持

鼓励研究、开发和使用建筑垃圾减排及综合利用新技术,利用财政性资金引进建筑垃圾综合利用重大技术、装备。对建筑垃圾综合利用企业在用地、用水、用地等方面给予政策优惠或资金补贴。

(3) 技术研究

对建筑垃圾进行资源化循环利用方面的科学研究,是建筑垃圾实现循环经济的根本保证。应发挥科研、设计、高等院校的技术优势,加强对建筑垃圾的回收利用的科研投入,并建立建筑垃圾资源化产品标准。

8、促进信息公开化

通过建立建筑垃圾管理信息平台,整合城管、住建、自然资源、各建设单位、交通等部门的相关信息,从整体上协调建筑垃圾的处置; 并通过媒体或网络发布各个处理设施的详细信息及运输路线等,发动、引导社会力量、社区市民主动参与,鼓励献计献策、参与监督,建立建筑垃圾收运处置管理社会化、多层面、运作有效的公众监管新机制。

9、加强安全运营管理意识

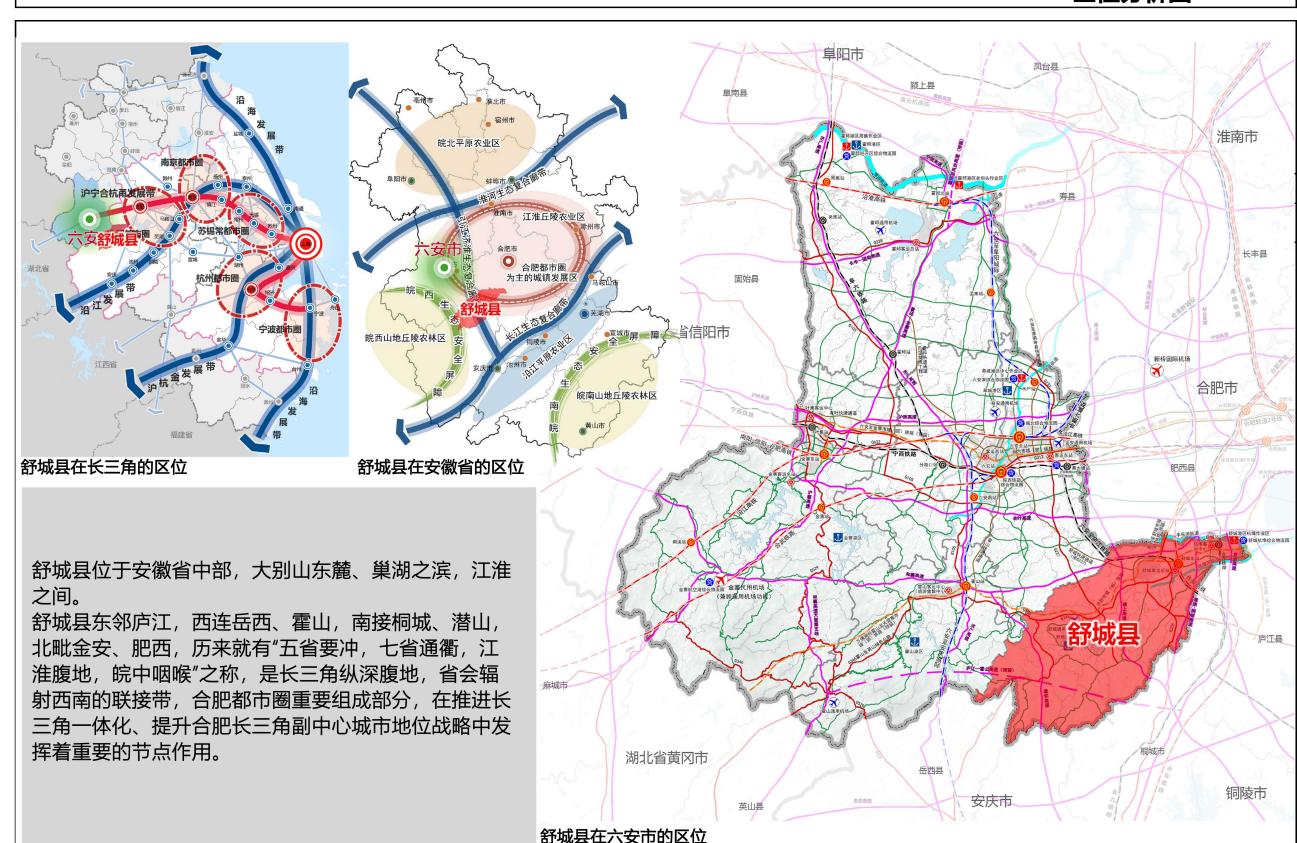
设置专门管理机构,制定严格措施,并配备必要设施,确保建筑 垃圾处理设施运行的安全性和环保性。建议主管部门定期对企业进行 安全生产检查,督促企业切实加强安全生产责任主体意识,通过定期

摸排、查缺补漏,不断优化完善各项安全生产防护措施。企业应对全部入职员工进行岗前培训,关键器械设备操作岗位的员工须按规定持有相应资格证书方可上岗作业。

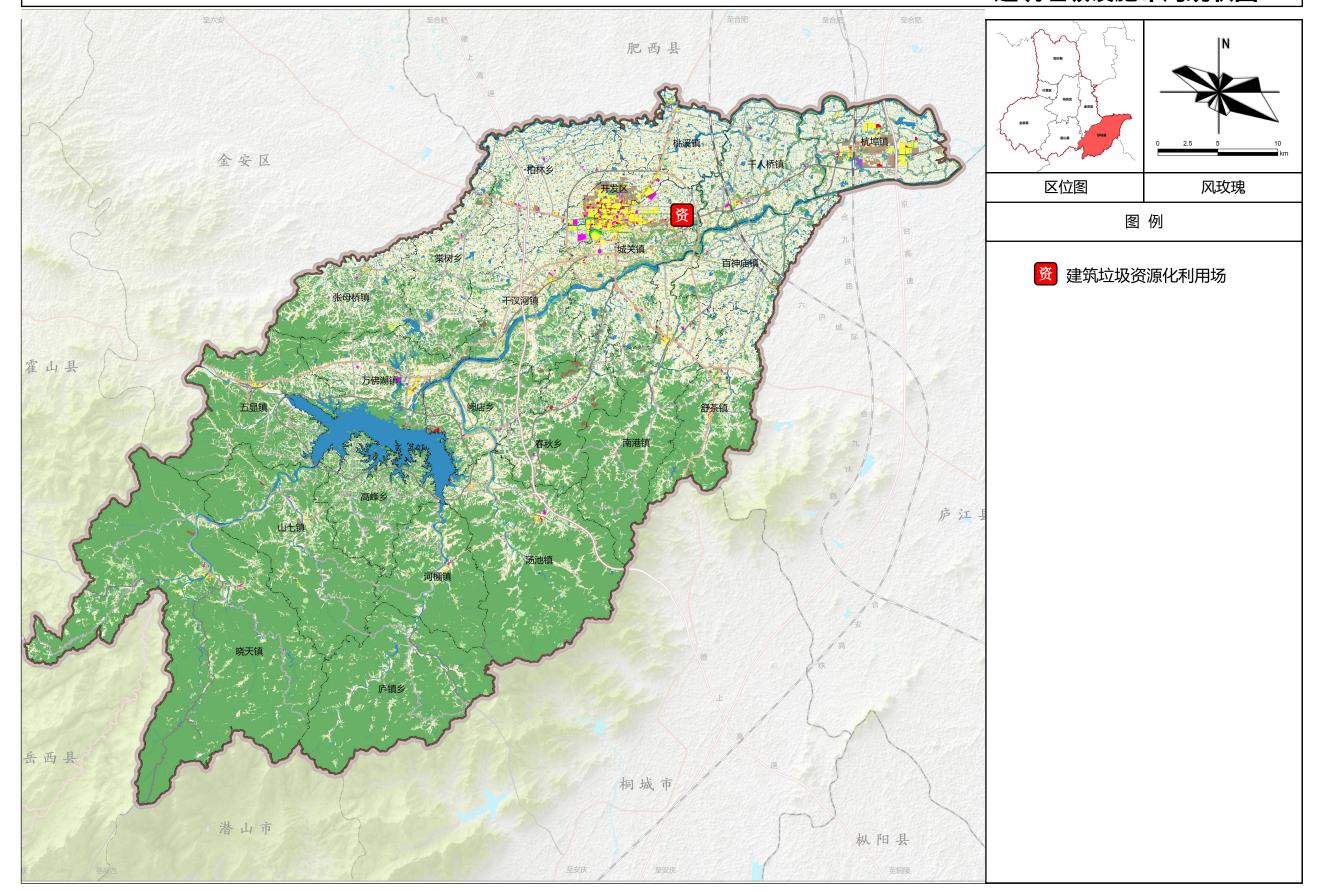
10、完善环境评价和监控体系

充分发挥环境保护技术政策在建筑垃圾处理设施建设中的指导 作用,尽快建立符合发展需要和市场经济特点的建筑垃圾处理设施环 境评价体系。

11、开展安全风险评估

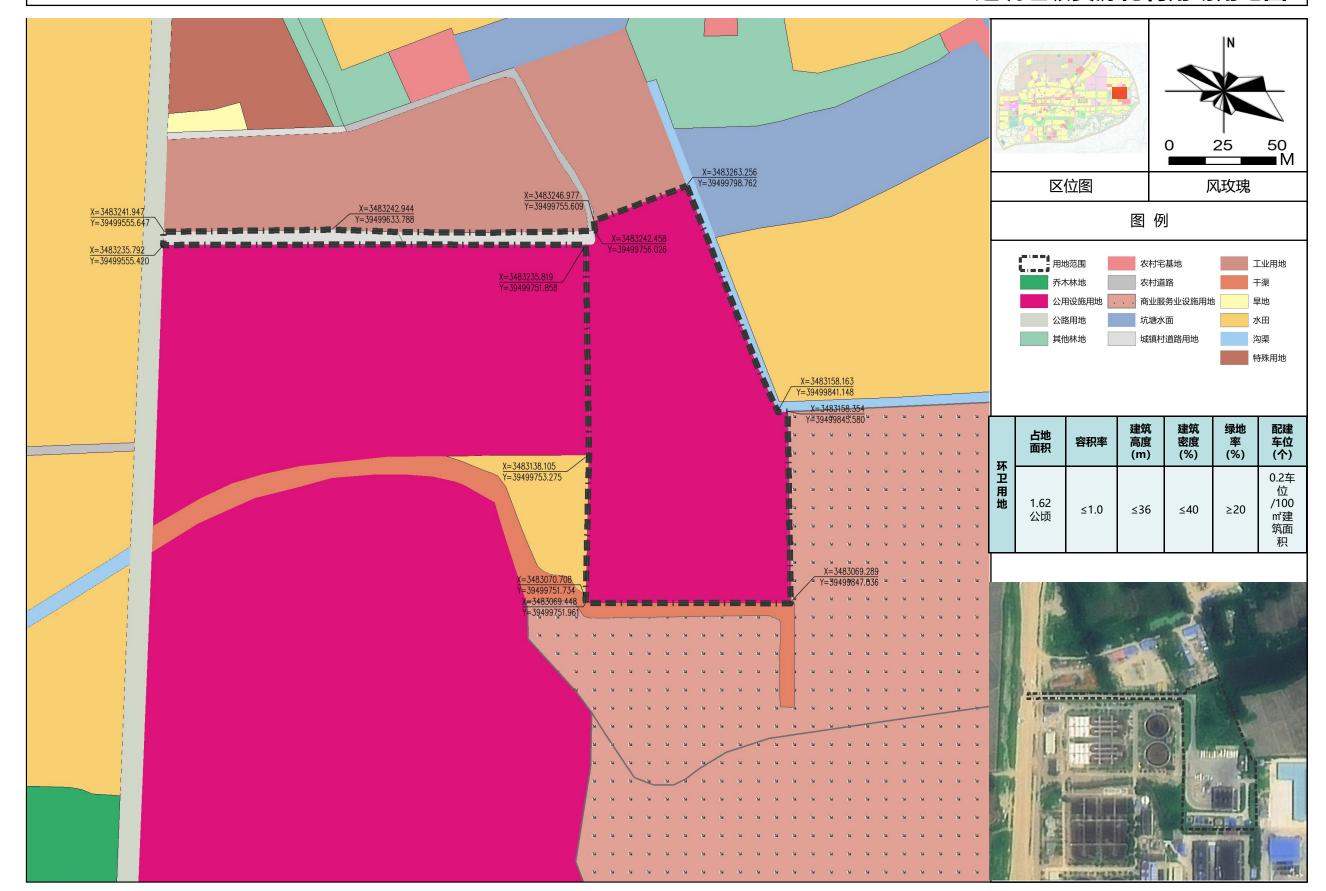

定期对已建设投产的建筑垃圾消纳场、资源化处理设施开展安全 风险评估,及时掌握及辨识风险源、消除安全隐患、制定风险防控措 施等。

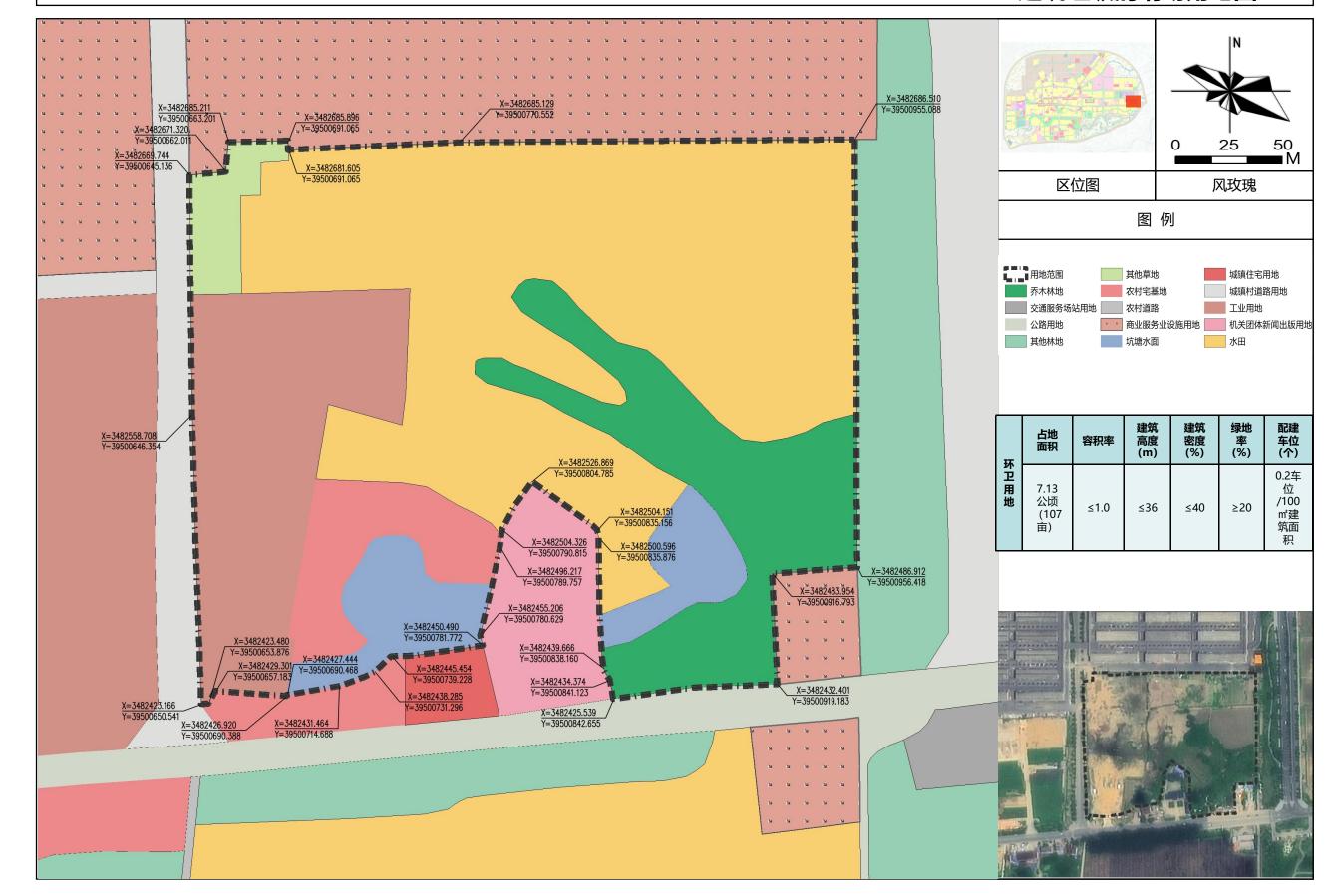
12、加大宣传扶持力度


建议加大宣传力度,可以从国家循环经济发展、生态文明建设、再生产品安全环保性能等方面全方位大力宣传使用建筑垃圾资源化产品的好处,营造积极使用建筑垃圾资源化产品的良好氛围。

思城设计集团有限公司 2024 年 9 月


区位分析图


建筑垃圾设施布局现状图


建筑垃圾设施布局规划图

建筑垃圾资源化利用场用地图

建筑垃圾消纳场用地图

思城设计集团有限公司 2024.9

目录

第	一章 总则	3
一、	规划背景	3
=,	规划范围和层次	5
三、	规划期限	5
四、	规划依据	5
五、	规划对象	7
第二章	现状分析	10
一、	区域概况	10
Ξ,	建筑垃圾处理现状	12
三、	问题分析	14
四、	相关规划衔接	16
第三章	总体要求	24
一、	指导思想	24
=,	基本原则	24
三、	规划目标	25
四、	规模预测	28
第四章	建筑垃圾源头减量规划	33
一、	源头减量要求	33
=,	源头减量总体措施	33
三、	源头分类减量措施	36
四、	源头污染环境防治要求	38
第五章	建筑垃圾收集运输规划	40
一、	收运主体	40
Ξ,	收运模式	40
Ξ,	分类收集	40
四、	收运流程	43
五、	收运要求	45
六、	收运队伍建设	47
+	收运交通安全管制	48

八、	收运信息化管理	49
九、	收运线路	51
十、	收运设施规划	51
第六章	建筑垃圾利用及处置规划	. 58
一、	处理方式	58
Ξ,	处理策略和方案	59
Ξ、	处置规划	63
四、	建筑垃圾存量治理规划	68
第七章	建筑垃圾监督管理规划	. 69
一、	部门职责	69
Ξ,	制度落实与建设	70
Ξ、	智能管理信息系统规划	72
第八章	建筑垃圾资源化利用产业发展规划	74
一、	建筑垃圾产业体系	74
Ξ,	建筑垃圾资源利用规划	75
Ξ、	建筑垃圾产业化运营与管理	81
第九章	环境保护与安全卫生	. 85
一、	环境保护总体要求	85
Ξ,	大气环境保护措施规划	88
Ξ、	噪声环境保护措施规划	92
四、	水环境保护措施规划	93
五、	土壤环境保护措施规划	94
六、	地质灾害防治措施规划	96
七、	生态恢复规划	97
八、	安全卫生规划	. 104
第十章	保障措施与实施建议	111
一、	保障措施	. 111
=,	实施建议	. 114

第一章 总则

一、规划背景

(一)"碳达峰、碳中和"目标引领下发展模式变革

2020年9月,习近平总书记在第七十五届联合国大会一般性辩论上的讲话中提出,"中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于 2030年前达到峰值,努力争取 2060年前实现碳中和"。

2021年4月30日,中共中央政治局第二十九次集体学习时,习近平总书记指出,实现"碳达峰、碳中和"是我国向世界作出的庄严承诺,也是一场广泛而深刻的经济社会变革,将推动经济社会发展建立在资源高效利用和绿色低碳发展的基础之上。"十四五"时期,我国生态文明建设进入以降碳为重点战略方向、推动减污降碳协同增效、促进经济社会发展全面绿色转型、实现生态环境质量改善由量变到质变的关键时期,全社会的生产、生活方式都会产生重要变化。

(二) 相关法规出台实施

2020年4月29日,十三届全国人大常委会第十七次会议修订了《中华人民共和国固体废物污染环境防治法》,自2020年9月1日起施行。新修订的固体废物污染环境防治法明确固体废物污染环境防治坚持减量化、资源化和无害化原则,完善建筑垃圾、农业固体废物等污染环境防治制度,建立建筑垃圾分类处理、全过程管理制度。

(三) 具体规划及行动指导

2020年5月8日,住房和城乡建设部印发了《关于推进建筑垃圾减量化的指导意见》(建质〔2020〕46号),要求统筹规划,源头减量。统筹工程策划、设计、施工等阶段,从源头上预防和减少工程建设过程中建筑垃圾的产生,有效减少工程全寿命期的建筑垃圾排

放。

因地制宜,系统推进。根据各地具体要求和工程项目实际情况,整合资源,制定计划,多措并举,系统推进建筑垃圾减量化工作。创新驱动,精细管理。推动建筑垃圾减量化技术和管理创新,推行精细化设计和施工,实现施工工地建筑垃圾分类管控和再利用。

2021年7月1日,国家发展改革委发布了《"十四五"循环经济发展规划》(发改环资〔2021〕969号),要求坚持节约资源和保护环境的基本国策,遵循"减量化、再利用、资源化"原则,着力建设资源循环型产业体系,加快构建废旧物资循环利用体系,深化农业循环经济发展,全面提高资源利用效率,提升再生资源利用水平,建立健全绿色低碳循环发展经济体系,为经济社会可持续发展提供资源保障。主要资源产出率比2020年提高约20%,单位GDP能源消耗、用水量比2020年分别降低13.5%、16%左右,农作物秸秆综合利用率保持在86%以上,大宗固废综合利用率达到60%,建筑垃圾综合利用率达到60%,废纸、废钢利用量分别达到6000万吨和3.2亿吨,再生有色金属产量达到2000万吨,资源循环利用产业产值达到5万亿元。

2022年7月,经国务院同意,住房和城乡建设部联合国家发展改革委印发实施《"十四五"全国城市基础设施建设规划》,围绕构建系统完备、高效实用、智能绿色、安全可靠的现代化基础设施体系,提出4方面重点任务:一是推进城市基础设施体系化建设,增强城市安全韧性能力。二是推动城市基础设施共建共享,促进形成区域与城乡协调发展新格局。三是完善城市生态基础设施体系,推动城市绿色低碳发展。四是加快新型城市基础设施建设,推进城市智慧化转型发展。

- 2023年7月,安徽省生态环境厅等十八家部门印发《关于深入推进我省"无废城市"建设工作的通知》,梯次推动全省域"无废城市"建设。
- 2024年4月, 六安市为深入推进"无废城市"建设, 促进城市可持续发展和绿色转型, 发布《2024年度固体废物、化学品、重金属污染、新污染物治理工作计划》。

二、规划范围和层次

本次规划范围为舒城县下辖的15个镇、6个乡和1个开发区。

三、规划期限

规划基期年为 2024年, 近期: 2024-2027年; 中期: 2028-2030年; 远期: 2031-2035年。。

四、规划依据

1、法律法规

《中华人民共和国固体废物污染环境防治法》(2020年修订);

《中华人民共和国环境保护法》(2014年修订):

《中华人民共和国循环经济促进法》(2018年修订);

《中华人民共和国城乡规划法》(2019年修订);

《中华人民共和国大气污染防治法》(2018年修订):

《中华人民共和国环境噪声污染防治法》(2021年修订);

《建设项目环境保护管理条例》(2017年修订):

《城市建筑垃圾管理规定》(建设部令〔2005〕139 号);

《城市市容和环境卫生管理条例》(2017年修订);

《市政公用事业特许经营管理办法》(2015年):

《城市规划编制办法实施细则》(2006年);

《建筑垃圾资源化利用行业规范条件(暂行)》(2016年);《安徽省城乡规划条例》;

2、标准规范

《城市环境卫生设施规划标准》(GB/T50337-2018);

《建筑垃圾减量化设计标准》(T/CECS1121-2022);

《危险废物贮存污染控制标准》(GB18597-2023);

《环境卫生设施设置标准》(CJJ27-2012);

《建筑垃圾处理技术标准》(CJJ/T134-2019);

《市容环境卫生术语标准》(CJJ/T65-2004);

《危险废物收集、贮存、运输技术规范》(HJ2025-2012);

《建筑垃圾转运处理电子联单管理标准》(T/CECS1210-2022);

《建筑垃圾就地分类及处理技术标准(征求意见稿)》:

3、相关规划及技术文件

《中共中央国务院关于进步加强城市规划建设管理工作的若干意见》(中发〔2016〕6号);

《国务院关于加快建立健全绿色低碳循环发展经济体系的指导 意见》(国发〔2021〕4号);

《国务院办公厅转发国家发展改革委等部门关于加快推进城镇环境基础设施建设指导意见的通知》(国办函〔2022〕7号);

《国务院办公厅关于加快构建废弃物循环利用体系的意见》(国办发〔2024〕7号);

《关于"十四五"大宗固体废弃物综合利用的指导意见》(发改环资〔2021〕381号):

《住房和城乡建设部国家发展改革委关于印发城乡建设领域碳 达峰实施方案的通知》(建标〔2022〕53号);

《住房和城乡建设部关于推进建筑垃圾减量化的指导意见》(建质〔2020〕46号):

安徽省《关于加强建筑垃圾管理及资源化利用的指导意见》的通知(建督〔2020〕96号);

《六安市国土空间总体规划(2021-2035年)》;

《六安市环卫设施布局国土空间总体规划(2021-2035年)》; 《舒城县国土空间总体规划(2021-2035年)》;

4、其他

其他相关基础资料及文件。

五、规划对象

本规划中建筑垃圾是指工程渣土、工程泥浆、工程垃圾、拆除垃圾和装修垃圾等的总称。包括新建、扩建、改建和拆除各类建筑物、构筑物、管网以及居民装饰装修房屋过程中所产生的弃土、弃料及其他废弃物,不包括经检验、鉴定为危险废物的建筑垃圾。

(一) 建筑垃圾分类

工程渣土:各类建筑物、构筑物、管网、道桥等在建设过程中开挖土石方产生的弃土。

工程泥浆:钻孔桩基施工、地下连续墙施工、泥水盾构施工、水平定向钻及泥水顶管等施工产生的泥浆。

工程垃圾:各类建筑物、构筑物、管网、道桥等在新建、改建、扩建过程中产生的混凝土、沥青混合料、砂浆、模板等弃料。

拆除垃圾:各类建筑物、构筑物、管网、道桥等在拆除过程中产生的混凝土、砂浆、砖瓦、陶瓷、石材、金属、木材等废弃物。

装修垃圾:各类房屋装饰装修过程中产生的混凝土、砂浆、砖瓦、陶瓷、石材、石膏、加气混凝土砌块、金属、木材、玻璃和塑料等废弃物。

(二) 分类收集点

主要用于收集居民区装饰、维修及拆除等过程中产生的装修垃圾。

(三) 建筑垃圾转运调配场

用于将建筑垃圾集中临时分类堆放、分拣和暂存的特定场所,后期再根据需求定向外运。

(四) 建筑垃圾消纳场

建筑垃圾消纳场是指按照本县建筑垃圾消纳场规划进行建设,专用于堆填处置建筑垃圾的场所。按照消纳建筑垃圾的类别不同,可分为工程渣土专用消纳场和混合消纳场。

(五)资源化利用处置场

建筑垃圾资源化利用处置场是指以未经加工处理的建筑垃圾作为主要原料,通过处置程序,制成成型产品或者可以直接再应用到新、改、扩建建设工程项目中的不成型产品的场地。

按照处置建筑垃圾类别的不同可将建筑垃圾资源化利用场分为工程渣土资源化利用场、拆除垃圾资源化利用场、工程垃圾和装修垃圾资源化利用场。不同类型的资源化利用场可独立或集中建设,集中建设时可划分不同功能生产区。

第二章 现状分析

一、区域概况

(一) 舒城县概况

舒城县位于安徽省中部,大别山东麓、巢湖之滨,江淮之间,是 国家生态文明建设示范区和全国"两山"实践创新基地。

舒城县东邻庐江,西连岳西、霍山,南接桐城、潜山,北毗金安、 肥西,历来就有"五省要冲,七省通衢,江淮腹地,皖中咽喉"之称, 是长三角纵深腹地,省会辐射西南的联接带,合肥都市圈重要组成部 分,在推进长三角一体化、提升合肥长三角副中心城市地位战略中发 挥着重要的节点作用。

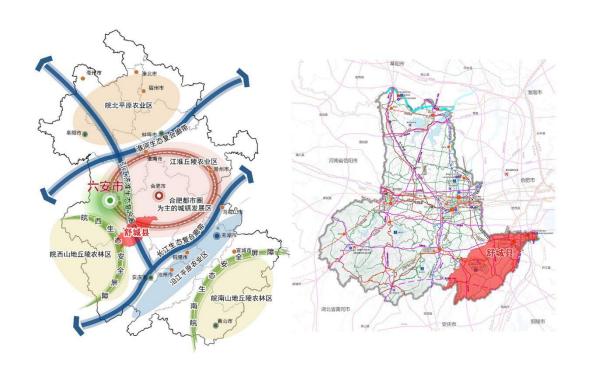


图 2-1 舒城县区位示意图

(二) 经济发展

2022年,舒城县实现地区生产总值 375.7亿元,比上年增长 5.2%, 低于上年同期 7.0 个百分点,高于全市平均水平 1.0 个百分点。其中,

第一产业 40.8 亿元,增长 4.7%;第二产业 179.8 亿元,增长 7.8%;第三产业 155.1 亿元,增长 2.6%。三次产业结构由上年同期 11.0:46.9:42.1 调整为 10.8:47.9:41.3,其中第一产业、第三产业分别下降 0.2、0.8 个百分点,第二产业提高 1.0 个百分点。

2022年,舒城县 243 家规模以上工业企业实现工业产值比上年增长 8.8%,84 家亿元企业实现产值增长 11.4%。规模以上工业增加值增长 9.2%,高于全市平均水平 0.5 个百分点。高技术制造业增加值增长 16.4%,低于全市平均水平 12.4 个百分点。战略性新兴产业产值增长 6.7%,高于全市平均水平 0.5 个百分点。农产品加工业产值增长 6.4%,高于全市平均水平 1.0 个百分点。工业品产销率 94.8%,提高 1.1 个百分点。

2022年,舒城县固定资产投资比上年增长 20.9%,高于全市平均水平 4.7个百分点。其中,项目投资增长 41.9%,高于全市平均水平 12.0个百分点。工业投资增长 28.1%,低于全市平均水平 19.5个百分点。房地产投资 71.3 亿元,下降 5.4%,低于全市平均水平 1.0个百分点。商品房销售面积 77.0 万平方米,下降 22.2%,高于全市平均水平 10.2 个百分点。

2022年,舒城县城乡居民人均可支配收入 26363元,比上年增长 6.8%,低于全市平均水平 0.1 个百分点。其中,城镇常住居民人均可支配收入 36156元,增长 5.5%,低于全市平均水平 0.2 个百分点;农村常住居民人均可支配收入 17320元,增长 7.9%,高于全市平均水平 0.3 个百分点。城乡居民收入比由上年 2.14:1 缩小为 2.09:1。

(三)人口规模

根据舒城县第七次全国人口普查公报,舒城县 2020 年常住人口 697250 人,户籍人口 697250 人,其中家庭户 279711 户,家庭户人

口为 673074 人, 平均每个家庭户为 2.41 人。

根据舒城县舒城县 2023 年国民经济和社会发展统计公报,舒城县 2023 年户籍人口 974498 人,315932 户,城镇人口 228236 人。

二、建筑垃圾处理现状

(一) 建筑垃圾产生现状

舒城县建筑垃圾主要分为 4 大类, 分别为下工程渣土、工程垃圾、拆除垃圾、装修垃圾。2019 年-2023 年产生情况如下表:

舒城且近	开年名	-类垃圾统计	- (单位.	啦)
n mad	-4	てどががり	(T):	ーセノ

建筑垃圾类型	2019 年	2020 年	2021 年	2022 年	2023 年
工程渣土	2260000	2103800	2980000	2300000	423000
工程垃圾、装修垃圾	65000	7800	67100	71000	78500
拆除垃圾				——	

备注: 舒城县历年工程垃圾、装修垃圾数据未分开统计

(二) 建筑垃圾收运处置现状

1、工程垃圾、装修垃圾

舒城县城区及周边乡镇产生的工程垃圾及装修垃圾采用直运模式,由持有《城市建筑垃圾处置核准许可证》资质的建筑垃圾运输公司安排运输车辆,运送至舒城县建筑装潢垃圾分拣、转运资源化利用处置场进行分拣处置。

距离城区较远的乡镇产生的工程垃圾及装修垃圾,由镇政府指定 临时建筑垃圾中转点进行堆放,由持有资质的公司安排时间统一运送 至舒城县建筑装潢垃圾分拣、转运资源化利用处置场。

2、工程渣土

舒城县工程渣土由持有资质的建筑施工渣土运输企业统一运送, 县城管执法大队通过指定路线、指定时间、指定去向、发放监管牌等 方式进行全程监管。舒城县工程渣土一般用于其他项目土方回填、平整场地等。县域内基本实现工程渣土平衡。

3、资源化利用处置场

舒城县建筑装潢垃圾分拣、转运资源化利用处置场位于舒城县梅河东路与舒茶路交叉路东北角,占地面积 11000 m²,处理规模为 250m ³/日,年处理规模约为 8 万吨。服务范围为舒城县全域。分拣后可燃物送至舒城海创垃圾发电厂进行焚烧发电,部分建筑垃圾粉碎制砖或用于路基填埋。

	现状建筑垃圾资源化利用设施					
	设施名称	位置	占地面积 (m²)	处理规模 (m³/日)	服务范围	
1	舒城县城区建筑 垃圾分拣、转运 资源化利用场	舒城县梅河东 路与舒荼路交 叉路东北角	11000	250	舒城县全域	

舒城县建筑垃圾处置设施表

(三) 建筑垃圾管理实施办法

舒城县城管局已制定《舒城县城区建筑装潢垃圾处置管理实施办法》,明确局属各单位的工作任务和工作要求。

舒城县城管执法部门是建筑垃圾管理的行政主管部门,具体负责 建筑垃圾处置工作。县发展改革(物价)、住房城乡建设、交通运输、 国土资源、环境保护、市场监管、农机、公安交管等部门履行各自职 责,相互配合,共同做好建筑垃圾运输及堆放管理工作。

- 1、县城管执法部门会同有关部门制定和实施建筑垃圾处置核准制度,负责对建设单位、施工单位或从事建筑垃圾运输单位的建筑垃圾运输及堆放实施方案进行核准,监督建筑垃圾运输、倾倒、堆放、利用等处置活动,监管建筑垃圾堆放场所。
 - 2、县发展改革(物价)部门负责制定建筑垃圾处置收费标准。
 - 3、县住房城乡建设部门负责会同城管执法、国土资源部门编制

建筑垃圾堆放场所规划,合理布局堆放场所,做到与城市建设需要相适应:负责建筑施工工地现场管理和监督,督促建设单位、施工单位在开工前向城管执法部门申报建筑垃圾运输及堆放实施方案并落实责任。

- 4、县交通运输部门负责办理建筑垃圾运输企业《道路运输经营 许可证》和建筑垃圾运输车辆《道路运输证》,配合城管执法部门实 施建筑垃圾运输核准和监督管理,依法查处车辆非法营运行为。
- **5**、县国土资源部门配合城管执法部门加强对建筑垃圾堆放场所的监管。
- 6、县环境保护部门负责建设项目环评中应有建筑施工扬尘防治的内容,对建筑垃圾运输及堆放场所实施统一环境监察监测。
 - 7、县市场监管部门负责建筑垃圾运输企业的注册登记工作。
- 8、县农机部门负责对农机车的管理以及驾驶人员的安全教育, 配合城管执法部门实施建筑垃圾运输核准和监督管理,协助有关部门 查处违规运输建筑垃圾的驾驶人员。
- 9、县公安交管部门负责对建筑垃圾运输车辆进行道路交通安全管理,配合城管执法部门实施建筑垃圾运输核准和监督管理工作,依法查处违反道路交通法规的运输车辆和人员。

三、问题分析

(一) 建筑垃圾处理意识有待提高

根据现场调研反馈,部分群众、施工单位、道路开挖单位、运输单位、装修单位及从业人员尚未形成建筑垃圾规范化处置意识,对建筑垃圾的分类处理意识不高,经过建筑垃圾知识宣传普及,分类处理的意识逐步提高。需进一步加强建筑企业的源头减量引导和居民装修垃圾"谁产生、谁处理"的宣传,要充分发挥舆论导向和媒体监督作

用,

广泛宣传建筑垃圾减量化的重要性,普及建筑垃圾减量化和现场再利用的基础知识,增强参建单位和人员的资源节约意识、环保意识。让民众真正意识到建筑垃圾处理的必要性,了解建筑垃圾分类处理的全过程,保障建筑垃圾治理的各项工作顺利开展。

(二) 建筑垃圾管理监督机制需持续完善

舒城县城管局制定了《舒城县城区建筑装潢垃圾处置管理实施办法》,但建筑垃圾的产生、运输和处理等环节的管理和监督存在不足,各相关部门配合治理工作的积极性也不高。各乡镇的建筑垃圾管理工作缺少全县的统一监管。因此,完善建筑垃圾的管理监督机制势在必行,将责任落实到各个部门,才能让建筑垃圾治理有章可循,让每个环节都能顺利进行。

(三) 部门统筹协作有待加强

建筑垃圾从源头产生、中端收运、末端处置涉及城市管理、住房和城乡建设、交通运输、行政审批服务、综合执法、生态环境、财政、发展和改革、自然资源(规划)等十多个部门。各部门所掌握信息不对称,建筑垃圾源头管控、中端监管、末端处置的闭环体系还不严密。

(四) 信息化管理水平待提升

舒城县现有建筑垃圾管理体系侧重源头管理,突出建筑垃圾的处置核准制度。但在建设单位或施工单位通过处置核准后,建筑垃圾的运输过程是否规范,末端处置是否规范,都需要全过程的联单跟踪管理,并建立信用管理制度。建议建立建筑垃圾管理的信息化系统,依托信息化平台加强多部门间的配合协作与联合执法,同时也可借助信息化的电子联单实现全过程闭环监管。

(五) 存量建筑垃圾分散多, 规模大小不一

目前,舒城县存量建筑垃圾主要堆放在建筑垃圾堆放点,分散各处,规模大小不一。经过整治后,建筑垃圾影响地表水的风险基本消除。但是长时间的堆积,部分固体小颗粒漂浮进入空气中,导致大气的环境污染,并且存量建筑垃圾占据了土地,在建筑垃圾中某些有害物质经过长期的过程可能进入到土壤之后会在土壤中发生一系列物理、化学和生物反应,进而导致了土壤的环境污染,土壤质量的降低。

(六) 建筑垃圾收运和处置设施配套需逐步完善

当前舒城县建有1座建筑装潢垃圾分类处置资源化利用中心,用地属于临时用地,远期处置规模不能满足全县需求。距离城区较远的乡镇无建筑垃圾中转站,一般由镇政府指定临时场地堆放,无规范场地。规划需进一步统筹规划建筑垃圾的收运和处置,努力提高建筑垃圾资源化利用率,减少污染,创造更多的就业渠道,实现可持续发展。

(七) 建筑垃圾源头减量效果不明显

当前建筑垃圾的源头排放管理仅限于处理核准制度,已与监管制度形成联动。应由城市管理主管部门牵头,相关部门联动,加强对固投项目建筑垃圾产量进行评估统计,强化审批加监管模式,压实建筑垃圾的源头排放管理。

四、相关规划衔接

(一)《六安市国土空间总体规划(2021—2035年)》

1、规划期限

规划目标年为 2035 年,近期目标年为 2025 年,远景展望至 2050 年。

2、城市性质

城市性质——六安市政治、经济、文化中心,合肥都市圈核心城市,大别山革命老区中心城市和综合交通枢纽,长三角地区重要的加

工制造业基地和生态屏障,具有滨水园林特色的现代化宜居宜业宜游城市。

3、环卫设施规划

基于循环经济的理念,采用高效分类收运模式和集中资源化处理模式相结合的方式,建立"源头削减、分类收集、分类运输、综合处理"的现代化固体废弃物处理系统,实现城市垃圾的"减量化、资源化、无害化"处理处置。同时要切实考虑人的感受,从处理厂、转运站到垃圾箱,进行人性化设计。处理厂和转运站保证防护距离的同时,采用新技术、新设备,尽量减少异味对人和环境的影响。

(二)《六安市城市市容环境卫生专业规划(2011—2030年)》

1、规划目标

以城市环境卫生设施的规范化、科学化,管理手段数字化、信息化为目标,使六安市环卫设施设置、收集、运输、处理及综合利用达到文明、科学、先进的水平,实现城市生活垃圾分类收集,实现垃圾中转、运输压缩密闭化;垃圾处理减量化、资源化、无害化;道路清扫保洁机械化;管理体系现代化、网络化。建立健全环卫管理体制和环卫设施配套体系,把六安市建设成为清洁、优美、舒适、文明的现代化城市。

2、规划指标

规划指标表

项目		2015 年目标	2020 年目标	2030 年目标
生活垃圾无害化处	理率	≥90%	≥95%	100%
生活垃圾清运机械化率	一次清运	≥20%	≥30%	≥50%
生拍型放用	二次转运	100%	100%	100%
道路机械化清扫率		≥30%	≥40%	≥60%
公厕水冲率		90%	100%	100%
粪便无害化处理率		100%	100%	100%
垃圾分类收率		≥30%	≥50%	≥85%
水面保洁率		≥70%	≥80%	95%

(三)《六安市绿色建筑发展专项规划》(征求意见稿)

1、总体目标

近期目标(2023-2025年):全市不断完善绿色建筑新时期发展体制机制,全面推动绿色建筑高质量发展,持续提升建筑能效,大力推进可再生能源建筑应用进程,稳步推进新型建筑工业化,创新推广绿色建材应用,积极推动装配式农房建设。到2025年,全市建设方式绿色转型成效显著,装配式建筑应用范围和建造质量显著提高,能源利用效率大幅提升,本地建筑节能相关产业加快壮大,形成绿色生活氛围,推动六安绿色建筑发展水平走在全省上游。

中期目标(2026-2030年):全市绿色建筑高质量发展体制机制和政策体系基本建立,建筑建造方式基本实现绿色低碳转型,建筑用能结构和方式明显低碳化。到2030年,建筑绿色低碳运行初步实现,建筑领域提前实现碳达峰目标。

2、具体目标

(1) 绿色建筑高质量发展

以城镇民用建筑为对象,全面实现绿色建筑标准全面普及化,提升绿色建筑星级水平;以低碳片区为载体,推动绿色建筑集中连片发展;在政府投资项目、示范项目、星级绿色建筑等工程项目中率先开展绿色建材应用试点,逐步提高城镇新建建筑中绿色建材应用比例。到 2025 年末,城镇新建建筑中星级绿色建筑占比达到 30%以上;到 2030 年末,城镇新建建筑中星级绿色建筑占比达到 40%以上。

舒城县:至 2025年,星级绿色建筑占比达到 30%以上、省级低碳片区试点 1 个。至 2030年,星级绿色建筑占比达到 40%以上。

(2) 装配式建筑稳步推进

全市在政府投资或国有资金投资的建筑项目的基础上,积极在房

地产开发项目和产业园区中推广装配式建筑建造技术,稳步扩大应用范围。到 2025 年末,装配式建筑占新建建筑面积比例达到 50%以上;到 2030 年末,装配式建筑占新建建筑面积比例达到 55%以上。

舒城县:至 2025年,装配式建筑占新建建筑面积比例达到 50%以上。至 2030年,装配式建筑占新建建筑面积比例达到 55%、创建装配式农房区域试点 1 个。

(3) 建筑节能能效加速提升

全市以城镇民用建筑为对象,强化新建建筑节能标准执行监管,创新既有建筑绿色化改造工作路径,积极支持开展超低/近零能耗建筑试点,加快建筑能效提升进程。到 2025 年末,全市城镇新建民用建筑能效提升 30%以上,既有建筑绿色化改造面积不低于 40 万平方米。到 2030 年末,全市城镇新建民用建筑能效力争提升 50%以上,既有建筑绿色化改造面积不低于 90 万平方米。

舒城县:至2025年,城镇新建民用建筑全面执行75%节能标准比例为100%;既有建筑绿色化改造面积不低于10万平方米;累计新增超低/近零能耗建筑项目不少于2个。2030年度,城镇新建民用建筑按超低能耗建筑标准建造比例达100%;累计新增既有建筑绿色化改造面积不低于15万平方米;累计新增超低/近零能耗建筑项目面积不少于2个。

(4) 建筑用能结构清洁化

全市以工业建筑和公共建筑为对象,深化可再生能源应用,推进 太阳能光伏建筑一体化建设,推广空气源等各类电动热泵技术,创建 国家整县(市、区)屋顶分布式光伏开发试点和省级光伏建筑试点城 市,替代和减少化石能源消费。到 2025 年末,建筑可再生能源替代 常规能源比例不低于8%,累计新增太阳能光伏建筑应用装机容量不 低于 200 兆瓦。到 2030 年末,建筑可再生能源替代常规能源比例不低于 10%,累计新增太阳能光伏建筑应用装机容量不低于 400 兆瓦。

舒城县:至 2025年,累计新增光伏建筑应用装机容量不低于 30 兆瓦;新建公共机构建筑、新建厂房屋顶光伏覆盖率达到 50%。至 2030年,累计新增光伏建筑应用装机容量不

(四)《舒城县国土空间总体规划(2021-2035年)》

1、规划期限

规划期限为 2021-2035 年。规划目标年为 2035 年,近期目标年为 2025 年,远景展望至 2050 年。

2、规划范围

舒城县行政辖区内所有国土空间,包括所辖 15 个镇、6 个乡和 1 个开发区,总面积约 2109 平方公里,其中中心城区面积约为 66 平方公里。

3、城市性质

长三角绿色产业基地,合肥都市圈重要节点城市,六安市副中心,官居官业官游的现代化生态城市。

4、规划目标

2035年,围绕"基本实现社会主义现代化,全县综合实力稳居全省第一方阵,人均主要指标位居长三角地区县级前列"的发展目标,形成生态环境持续好转,粮食安全得到保障,城乡生活空间品质优良的国土空间开发保护新格局,基本建成绿色、安全、开放、宜居的大美舒城;到2050年,全面实现国土空间治理体系和治理能力现代化,

全面建成满足人民对美好生活的向往、承载高质量生活的美丽家园,全面支撑建成幸福富裕的舒城新高地。

5、国土空间总体格局

构建"一带两片一廊多点"的国土空间总体格局。

一带:以县城为核心,杭埠镇、万佛湖镇为重要节点,打造杭埠 -舒城-万佛湖城镇发展带,促进各类要素集中。

两片:北部高产农业片区,依托北部优质的土地,重点推进高标准农田建设,保障农产品生产和供给安全,保障北部"金三角"建设;南部农林保育片区,结合南部山林开展茶叶、林果和花卉种植,同时落实皖西生态安全屏障建设要求,推进区域生态保育建设,着力打造南部"绿三角"。

一廊:大别山-巢湖生态廊道,以杭埠河、丰乐河等重要水系为载体,强化大别山生态安全屏障与巢湖生态绿心之间的生态联系,构建区域生态廊道。

多点:多个农业、生态、城镇节点,构成舒城县国土空间总体格局。

6、中心城区空间结构

按照"田园入楔、环形放射、组团布局、生态组网"的中心城区发展思路,构建"二轴、三环、六区"的总体空间结构,利用龙津大道和桃溪路二条城市发展轴线,结合内城文化记忆环、中城宜居宜业环和外城交通生态环,将中心城区六大片区串联起来,形成公共服务设施布局均衡、职住平衡、路网结构合理、蓝绿空间连通的组团式环形放射状空间布局。

7、中心城区环卫设施规划

至 2035 年,中心城区实现生活垃圾清运率 100%,无害化处理率 100%,生活垃圾回收资源利用率达到 35%。支持结合污水厂建设粪便处理厂站。推进飞霞转运站、开发区转运站以及春秋农贸市场收集站升级改造工程。新建梅山北路转运站和七门堰路转运站,在南溪河

规划建设环卫码头一处。推进建筑垃圾资源化综合利用,按就地消纳、就近处理原则。建立分类投放、分类收集、分类运输、分类处理的生活垃圾管理系统,统筹生活垃圾公共转运、处理设施与收集设施的有效衔接,推动实现生活垃圾减量化、资源化、无害化。

8、环境基础设施建设

促进环卫设施集中整合与模式创新。统筹垃圾处理全过程,逐步实现全域垃圾粗分,试行垃圾细分。推行"环卫综合服务设施"建设模式,支持新建、改扩建一批生活垃圾转运站,推进垃圾源头减量和资源化利用,按就地消纳、就近处理原则。推进生活垃圾焚烧发电厂、餐厨垃圾处理厂、建筑垃圾分拣厂、废旧家电拆解厂以及再生资源回收厂建设。支持结合污水厂建设粪便处理厂站。支持乡镇环卫设施建设,实现乡镇垃圾中转站全覆盖。农村生活垃圾治理采取"户集、村收、乡镇转运、县处理"的模式直接运作,全面覆盖村镇生活垃圾收集、道路保洁、垃圾运输转运等垃圾治理工作,建立起"统一收集、统一转运、集中处理"的生活垃圾治理体系。至2035年,生活垃圾清运率和无害化处理率达到100%,生活垃圾回收资源利用率达到35%。加强一般工业固体废弃物、危险废弃物和医疗废弃物焚烧处置,确保危险废弃物环境无害化处置率、医疗废弃物环境无害化处置率均达到100%。

(五)《舒城县国民经济和社会发展第一四个五年规划和 2035 年远景日标纲要》

大力发展循环经济。推进开发区循环化发展,促进园区废物交换利用、能源资源梯级利用、污染集中治理,建设生态工业园区。推进各种农业资源往复多层与高效利用,推进秸秆资源化综合利用,减少废弃物和污染物,发展生态循环农业。加强工业后废、建筑垃圾等大

宗废弃物资源化利用,加快建设城市餐厨废弃物资源化利用和无害化处理系统。健全再生资源回收利用网络加强生活垃圾分类回收与再生资源回收的衔接。到 2025 年,一般工业固体废物综合利用率达到 95%以上。

第三章 总体要求

一、指导思想

以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大和二十届历次全会精神,全面落实习近平总书记对安徽重要讲话和重要指示批示精神,牢固树立绿水青山就是金山银山理念,深入实施可持续发展战略,综合考虑资源再利用、社会经济发展和环境保护的关系,以发展循环经济、推进生态文明建设、改善人居环境为原则,建立全县统筹、布局合理、技术先进、资源得到有效利用的建筑垃圾处理体系,实现建筑垃圾处理经济效益、生态效益和社会效益的统一。遵循"规划引导、统一管理、分级处置、科学定点"的工作思路,着力构建"全程管理、规范运输、综合利用、平衡消纳"的建筑垃圾收运处置体系和"政府主导、行业管理、属地负责、社会参与"的统筹管理体系,充分发挥政策的扶持和引导作用,实现建筑垃圾的减量化、资源化、无害化,全面提升建筑垃圾管理水平,满足舒城县在规划期内开展建筑垃圾处理处置和相关设施建设的需求,推动舒城县加快高质量发展,为全力推进"无废城市"建设提供机制保障。

二、基本原则

(一) 统筹规划、合理布局

统筹解决县域建筑垃圾处理问题,通过区域联动、设施共享等形式,合理确定建筑垃圾处理设施建设规模,实现基础设施的优化配置,提高设施利用效率,扩大服务覆盖面。

(二) 分区规划, 因地制宜

规划范围内各区域各具特色,功能各异,应根据各区域自身的特点和实际情况进行分析和考虑,做到分区规划,因地制宜。

(三)规划协调、分步实施

建筑垃圾管理是城市建设与管理众多工作中的一项,同样,建筑垃圾处理专项规划是城市规划的一部分,只有将建筑垃圾处理专项规划的编制与上下层次规划、其他专项规划相互协调,才能保证规划的正常实施。同时,规划在解决建筑垃圾现状问题的同时,充分考虑远期发展需求,处理设施建设实施以近期为主,用地应充分考虑远期需求,力求近远期结合,分步实施。

(四)全过程管理、长效管理

对于建筑垃圾管理,应当加强源头减量、排放、贮存、运输、综合利用和消纳的全过程管理,联合其他相关管理部门,建立健全建筑垃圾管理工作协调机制,达到长效管理目的。

(五)源头减量、利用优先

在政策配套、管理到位的前提下从源头减少建筑垃圾产生量、探索资源化利用途径。着力提升建筑垃圾资源化利用水平,推动资源化产品的广泛应用。

(六) 科学合理、实施性强

在详细调查现状情况的基础上,通过有针对性的分析评价,提出 切实可行的规划方案和对策措施,体现环境效益、社会效益和经济效 益的有效统一,保证规划既具有科学性、合理性,同时又具有较好的 现实性和可实施性。

三、规划目标

(一) 总体目标

推进建筑垃圾源头减量,践行"绿色策划、绿色设计、绿色施工、绿色交付",建立健全建筑垃圾分类处理设施和保障体系,建立建筑垃圾全过程管理和环境防治制度,完善建筑垃圾多部门联动及监督考核体系,形成建筑垃圾的源头减量、分类投放、中端收运、末端处置

和再生产品利用的全流程管理体系。

依法简化建筑垃圾资源化利用项目用地审批手续,加快补齐能力 缺口,推动规模化的建筑垃圾资源化利用示范项目建设,实现源头减 量化、处置资源化、全面无害化,促进城乡绿色发展、低碳发展和生 态发展。

本规划的总体目标是实现舒城县建筑垃圾的无害化、减量化、资源化处理,到 2027 年全县建筑垃圾资源化利用率达到 65%,工程、拆装、装修垃圾资源化利用率达到 50%。

(二) 分期目标

近期目标(2024~2027年):完善建筑垃圾治理的顶层设计;理顺建筑垃圾管理体制;摸清底数,探索建立建筑垃圾信息化监管平台;进一步落实建筑垃圾处置核准制度;初步缓解建筑垃圾产生量与处理设施能力不足的矛盾;加强建筑垃圾源头分类、控源减量,加快提升建筑垃圾安全处置水平。

中期目标(2026~2030年):建筑垃圾控源减量初见成效;建筑垃圾处理设施能力与产生量基本匹配;建立电子联单管理制度,完善建筑垃圾信息化监管平台建设;提升建筑垃圾规范化分类、排放、运输和资源化利用水平,初步实现建筑垃圾从源头到末端的全过程管控。

远期目标(2031~2035年):建立县域统筹、布局合理、技术先进、资源有效利用的建筑垃圾处理体系;建立安全有序、全程可控的建筑垃圾收运系统;初步形成链条完整、环境友好、良性发展的建筑垃圾产业体系;实现规划范围内建筑垃圾从源头到末端全过程信息化、智能化管理;使规划范围内建筑垃圾源头减量目标、综合利用率、资源化利用率、资源化产品利用目标等得到全面提升。

(三) 指标体系

(1) 名词定义:

建筑垃圾综合利用率是指建筑垃圾中能够被回收利用的部分占建筑垃圾总量的比例。

建筑垃圾资源化利用率是指将建筑垃圾转化为资源产品的比例,即建筑垃圾经过处理后,能够被再次利用的部分占原始建筑垃圾总量的百分比。

(2) 规划指标: 规划指标体系的选择和指标数据的确定综合考虑了舒城县建筑垃圾现状水平、国内发达城市/地区的建筑垃圾的发展指标,以及国家文明城市和国家卫生城市的相关要求。

舒城县建筑垃圾规划指标表

指标类别	扌	旨标内容	近期指标 (2027年)	中期指标(2030年)	远期指标 (2035 年)	备注
	新建建筑施工现场建筑垃圾排放量(不包括工程渣土、工程泥浆)(t/万m²)		≪300	≪300	≤250	
減量化	圾排放量(竞施工现场建筑垃不包括工程渣土、 家)(t/万㎡)	≤200	≤200	≤200	约束性
		已式建筑面积占新 筑比例(%)	≥35	≥35	≥40	
	建筑垃圾综合利用率(%)		≥65	≥70	≥90	
资	工程、拆装、装修垃圾资源 化利用率(%)		≥50	≥55	≥60	约十
源化		工程垃圾	50	55	60	東 性
	其中	拆除垃圾	50	55	60	
		装修垃圾	50	55	60	
无害	建筑垃圾密闭化运输率(%)		100	100	100	约束
古化	建筑垃圾无	E害化处理率(%)	90	95	100	性

智	运输车辆车载卫星定位系统安装比例(%)	100	100	100	约束
能化	施工工地、填埋消纳场监控管理系统安装比例(%)	100	100	100	東 性

四、规模预测

(一)人口及开工面积预测

1、人口

根据舒城县第七次全国人口普查公报,舒城县 2020 年常住人口 697250 人,户籍人口 697250 人。其中家庭户 279711 户,家庭户人口为 673074 人,平均每个家庭户为 2.41 人。

根据舒城县舒城县 2023 年国民经济和社会发展统计公报,舒城县 2023 年户籍人口 974498 人,315932 户,城镇人口 228236 人。

根据《舒城县国土空间总体规划(2021-2035年)》,规划至2025年,舒城县常住人口为70-75万人。至2035年,舒城县县域常住人口规模达82-88万人,县域户籍人口100万人。

2020年舒城县家庭户户数为 27.97万户。规划户数增速与上位规划人口增长率保持一致。预测至 2027年,舒城县家庭户约 30.67万户;至 2035年舒城县家庭户约 40.12万户。

2、开工面积

2019年舒城县新开工建筑面积 175.77万平方米,2020年舒城县新开工建筑面积 149.40万平方米,2021年新开工建筑面积 130.00万平方米,2022年新开工建筑面积 195.62万平方米,2023年新开工建筑面积 90.00万平方米。2024年新开工建筑面积取前四年平均值162.70万平米。2025—2035年采取年均增速 1%进行测算。

(二) 工程垃圾产生量预测

1、《住房和城乡建设部关于推进建筑垃圾减量化的指导意见》

(建质〔2020〕〕46号)的要求:

2020年底,各地区建筑垃圾减量化工作机制初步建立。2025年底,各地区建筑垃圾减量化工作机制进一步完善,实现新建建筑施工工地建筑垃圾(不包括工程渣土、工程泥浆)排放量每万平方米不高于300吨,装配式建筑施工工地建筑垃圾(不包括工程渣土、工程泥浆)排放量每万平方米不高于200吨。

2、测算公式

根据《建筑垃圾处理技术标准》(CJJ/T134-2019)对工程垃圾的预测方法,

Mg=Rg×mg

式中: Mg-某城市或区域工程垃圾产生量, t/a;

Rg-城市或区域新增建筑面积, 10⁴ m²/a;

mg-单位面积工程垃圾产生量基数,

t/10⁴ m², 可取 300t/10⁴ m²~800t/10⁴ m²。

3、工程垃圾产量预测

参照舒城县提供的数据, 预测 2024 年舒城县开工建筑约 148.16 万平方米, 预测后期开工建筑面积增速为 1%。

近期单位面积工程垃圾产生基数取 300t/10⁴ m², 远期取 250t/10⁴ m²。

详细数据如下表所示:

工程垃圾产生量预测					
年份	新开工建筑面积(万	单位面积产生量(t/万	工程垃圾产生量		
十 //	平方米)	m²)	(t)		
2019 年	175. 77				
2020 年	149. 40				
2021 年	130. 00		——		
2022 年	195. 62				
2023 年	90.00				
2024 年	148. 16	300	44447. 40		

2025 年	149.64	300	44891.87
2026 年	151. 14	300	45340. 79
2027 年	152. 65	300	45794. 20
2028 年	154. 17	250	38543. 45
2029 年	155. 72	250	38928.89
2030年	157. 27	250	39318. 18
2031 年	158. 85	250	39711. 36
2032 年	160. 43	250	40108.47
2033 年	162. 04	250	40509. 56
2034 年	163. 66	250	40914.65
2035 年	165. 30	250	41323. 80

(三) 拆除垃圾产生量预测

1、测算公式

根据《建筑垃圾处理技术标准》(CJJ/T134-2019)对拆除垃圾的预测方法,

$Mc=Rc \times mc$

式中: Mc—某城市或区域拆除垃圾产生量, t/a;

Rc—城市或区域拆除面积, 10⁴ m²/a;

mc一单位面积拆除垃圾产生量基数,

t/万 m², 可取 8000t/10⁴ m²~13000t/10⁴ m²。

预测 2024 年后舒城县拆除建筑约 1.0 万平方米,

单位面积拆除垃圾产生量取 8500t/10⁴ m²。

	拆除垃圾产生量预测					
年份	拆除面积(万m²)	单位面积产生量(t/万m²)	拆除垃圾产生量(t)			
2024 年	1.00	8500	8500			
2025 年	1.00	8500	8500			
2026 年	1.00	8500	8500			
2027 年	1.00	8500	8500			
2028 年	1.00	8500	8500			
2029 年	1.00	8500	8500			
2030 年	1.00	8500	8500			
2031 年	1.00	8500	8500			
2032 年	1.00	8500	8500			
2033 年	1.00	8500	8500			

2034 年	1.00	8500	8500
2035 年	1.00	8500	8500

(四)装修垃圾产生量预测

1、测算公式

根据《建筑垃圾处理技术标准》(CJJ/T134-2019) 对装修垃圾的预测方法:

$Mz=Rz\times mz$

式中: Mz—某城市或区域装修垃圾产生量, t/a:

Rz—城市或区域居民户数,户;

mz—单位户数装修垃圾产生量基数,t/户•a,可取 0.5t/户•a~1.0t/户•a。

2、装修垃圾产量预测

根据人口规模预测:

2020年舒城县家庭户户数为 27.97万户,根据《舒城县国土空间总体规划(2021-2035年)》人口预测,至 2027年,舒城县家庭户约30.67万户;至 2035年舒城县家庭户约40.12万户。

2027 年装修垃圾产生量=总户数(306700)×单位户数装修垃圾产生量基数(取 0.5t/户•a)=153350 吨。

2035 年装修垃圾产生量=总户数(401200)×单位户数装修垃圾产生量基数(取 0.5t/户•a)=200600 吨。

(五) 工程渣土、工程泥浆产生量预测

参考舒城县提供的近五年工程渣土年产量统计表,预测 2027 年工程渣土和工程泥浆预计产生量为 201.34 万吨; 2035 年工程渣土和工程泥浆预计产生量为 201.34 万吨。

(六) 建筑垃圾产生量预测汇总

本次的预测结果为 2027 年舒城县全县建筑垃圾(不含工程渣土、

工程泥浆)预计产量为 20.76 万吨; 2035 年舒城县全县建筑垃圾(不含工程渣土、工程泥浆)预计产量为 25.04 万吨。

第四章 建筑垃圾源头减量规划

一、源头减量要求

为贯彻落实《关于推动城乡建设绿色发展的实施方案》(皖办发〔2021〕34号)、《安徽省建筑节能降碳行动计划的通知》(皖政办〔2022〕11号)及《六安市城乡建设领域碳达峰实施方案》(六建科〔2023〕36号)等文件要求,到2027年底,全县装配式建筑新开工面积占新建建筑面积比例达到50%以上,竣工装配式建筑面积占竣工建筑面积比例达到30%以上。新立项的政府投资或国有资金投资的单体地上面积5000平方米以上的新建公共建筑和10万平方米以上的新建居住小区应采用装配式建造。其他地上2万平方米以上新建公共建筑和10万平方米以上的新建居住小区应采用装配式建造。其他地上2万平方米以上新建公共建筑和10万平方米以上的新建居住小区原则上采用装配式建造。

重点抗震设防类公共建筑、大型公共建筑、政府投资公共建筑要率先采用装配式钢结构建造技术,大跨、超高建筑及工业厂房宜采用装配式钢结构建造技术。

鼓励农房、民宿以及社区活动中心、警务室、公厕等适宜标准化、模块化的建设项目采用装配式方式建造。鼓励道路桥梁、综合管廊、给排水、防洪护岸和园林绿化等基础设施选用装配式部品部件建造。

二、源头减量总体措施

(一) 规划引领

在规划阶段,依据地形地貌进行建设工程规划,优化竖向规划方案,减少工程渣土的产生。建筑工程竖向设计应充分利用场地原始的地形地貌,根据周边市政道路标高合理确定场地标高及建筑布局,减少工程渣土的开挖量,尽量实现工程渣土平衡。

设计阶段,优化结构设计,减少工程垃圾的产生,多方面对设计方案论证,确保可施性。减少装饰性构件的使用,避免不必要的建筑

垃圾产生。通过对建筑的可持续设计或者建筑垃圾减量化设计、提高建筑年限使用寿命、实行旧建筑材料的直接再利用等手段。通过普及装配式建筑和预制构件,减少建筑垃圾的产生。

(二) 加强施工管理

在施工阶段,优化施工组织设计方案,最大限度减少工程渣土的排放量。研究开发适用于各类建设工程的装配式结构并推广使用,提升住宅全装修交付比例,减少装修垃圾的产生。对于拆除工程,通过优化拆除工序和拆除现场分类,实行有序、专业化拆解,减少建筑垃圾的产生和提高排放出拆除垃圾的品质,提高拆除垃圾的资源化利用率。

建设单位应依法依规申请建筑垃圾排放核准,明确工程建设项目建筑垃圾减量化目标和措施,将建筑垃圾减量化措施费用纳入工程概算,落实设计、施工、监理单位建筑垃圾减量责任。大力推广装配式建筑等新型建造方式,预制构件生产企业应在生产、加工、储存、养护及运输等过程中加强管控,从源头上预防和减少工程建设过程中建筑垃圾的产生,有效减少工程全寿命期的建筑垃圾排放。

施工单位应建立建筑垃圾分类收集与存放台账管理制度,鼓励以末端处置为导向对建筑垃圾进行分类及存放,将建筑垃圾按照工程渣土、工程泥浆、施工垃圾、拆除垃圾及装修垃圾等种类进行分类存放。

施工单位可在现场将部分满足质量要求的余料根据实际需求加工成各种工程材料,实现源头减量。其他不具备就地利用条件的及时运至建筑垃圾消纳场进行分类堆放或运至建筑垃圾资源化利用厂进行资源化利用。严禁将生活垃圾、大件垃圾、园林垃圾等混入建筑垃圾。

施工单位应编制建筑垃圾处理专项方案,采取污染防治措施;做

好设计深化,并加强施工组织和管理工作,加强 BIM 等先进技术在工程中的应用,提高建筑施工管理水平,减少因施工质量原因造成的建筑资源浪费及建筑垃圾产生;推广智慧工地监管系统,提升施工工地监管水平,做好施工中的每一个环节,提高施工质量,有效地减少建筑垃圾的产生。

施工工地应采用重复利用率高的标准化设施,鼓励施工单位在一定区域范围内统筹临时设施和周转材料的调配,提高施工期间临时设施和永久性设施的综合利用率。

(三)推广利用新技术

- 1、政府引导成立建筑垃圾减量化协会,提供技术和设备咨服务,对各旧改拆迁项目、新建施工项目提供建筑垃圾循环利用的技术和设备咨询,使每一个施工工地都可以成为一处小型建筑垃圾资源化利用厂,都能够最大程度地循环利用建筑垃圾,形成社会效益与经济效益的和谐统一。
- 2、推广装配式建筑,推行工程总承包和全过程工程咨询模式,构建建筑垃圾减排体系,从源头上着力减少建筑垃圾的排放。
- 3、优化建筑设计。工程设计单位应按照相关规范,优化设计标高,推广 BIM 设计。在减少建筑垃圾方面,建筑设计方案中要考虑的问题有:建筑物应有较长的使用寿命;采用可以少产生建筑垃圾的结构设计;选用少产生建筑垃圾的建材和再生建材;应考虑到建筑物将来维修和改造时便于进行,且建筑垃圾较少;应考虑建筑物在将来拆除时建筑材料和构件的再生问题。
- 4、应推广新的施工技术,提高结构的施工精度,避免凿除或修补而产生的垃圾。现在有很多建筑的结构是现场浇筑的,但尺寸控制精度常常不够,达不到横平竖直的要求,在粉刷之前还要对局部构件

做凿除和修补处理,造成浪费。

三、源头分类减量措施

(一) 工程垃圾

1、应优先使用绿色建材

绿色建材与传统建材相比,在材料物质上,无毒害、无污染,不 损害人体健康;在生产原料上,大量使用固体废弃物,节约了天然原 材料;在其生产过程中,采用了低能耗的先进制造技术和无污染的生 产工艺。在建筑设计时的建材选用标准当中,优先选用绿色建材,既 满足建筑垃圾源头减量化排放的要求,又是发展生态型建筑业生产的 必要条件。

2、应发展预制装配式建筑

与传统的结构相比,装配式结构有利于节约建材原材料、减小建 材的损耗、避免各种建材构件因尺寸不合而二次加工、切割等产生废 料,减少了施工阶段的建筑垃圾量,在建筑物未来的拆除方面都更利 于实现建筑垃圾的源头减量化控制。

3、应在优化设计质量和深度

建立绿色设计理念,推行精细化设计,开展土方平衡论证,引导设计单位根据场地实际合理确定标高,减少渣土外运。因地制宜地选择结构体系,减少建筑形体不规则性,深化 BIM 技术应用,加强建筑、结构、机电、装修景观全专业一体化协同设计。

4、应加强施工精细化管理

在施工组织设计中设置建筑垃圾减量化工作专篇,明确建筑垃圾单位排放量及减排措施,促进施工单位科学制定施工组织设计,合理确定施工工序,推行数字化加工和信息化管理,实现精准下料、精细管理,降低建筑材料损耗率。严把材料进场验收关、分部分项工程验

收关、工程构件成品保护关;推行监理报告制度,强化工程质量管控,减少因质量问题导致的返工或修补,防止因质量管理不到位而产生大量的建筑垃圾。

(二) 拆除垃圾

1、应在规划阶段考虑未来建筑物的拆除

目前在规划上,很少去考虑建筑物在未来的拆除,以至于现在的建筑物绝大部分是被破坏性拆除,从而产生了大量的建筑垃圾。在规划阶段考虑未来建筑物的拆除,为建筑物拆除提供了一种替代方法,不仅能减少建筑垃圾的产生量,还能为建筑物的拆解、材料的回收运输等制造新的商机。

2、应做好旧建筑的处置评价工作

积极开展旧建筑的多元化再利用。"大拆大建"和"短命建筑"是导致建筑垃圾产量增加的重要因素之一,应当做好旧建筑的处置评价工作,通过科学和适当的方法选择正确的旧建筑处理方案。相比于拆除重建,发展旧建筑的更新改造不仅能节约资源,也能减少建筑垃圾的产量。因此在旧建筑的处置评价工作当中,应当着重的发展旧建筑的"资源化再利用"。

3、应优化建筑物的拆解方式

优化拆解方法能够有效的提高旧建材的再利用率。如分离拆解或者分类拆解,人工拆除内部装修、机械拆除建筑物的混合拆除方式就可提高建材的再利用率。

(三) 装修垃圾

可通过推广全装修房、改善施工工艺和提高施工水平等多种方式,从源头上减少装修垃圾的产生量。引导和鼓励新建建筑住宅一次装修到位或采取菜单式定制装修等模式,对毛坯房予以限制,着力减

少室内装修垃圾产生量。

(四) 工程渣土、工程泥浆

工程渣土和少量工程泥浆可采用区域土方调配的方式,减少需要处理和堆填消纳的总量。对于施工产生的可用于工程回填的工程渣土,优先用于土方平衡。

区域土方调配首先以规划区内,以各个因施工需要回填建筑弃土的建设工地,以独立项目工地为控制的基本单元,通过信息系统或设计管理机制对该规划区内各项目工地之间的土方填挖量进行平衡调配。如该片区内土方调配无法平衡,则进一步在各规划片区和县区范围内进行土方协调平衡。通过区域土方调配使工程查土尽可能多的用于回填利用,减少其需处理和填埋的量。

四、源头污染环境防治要求

施工工地实行围挡封闭,主要路段的施工工地围挡高度不得低于 2.5 米(含 2.5 米),一般路段的施工工地围挡高度不得低于 1.8 米(含 1.8 米),围挡底部应使用混凝土或砌砖作为基础且高度不小于 50 公分,围挡内侧应设置环形贯通排水沟,确保泥浆、污水不外溢出围挡。

施工现场周围应当设置连续、密闭的围挡,施工现场围挡率 100%。各类脚手架或外露性临边防护构架的外立面,应使用安全网 封闭围护或包裹,并应严密、牢固、平整、美观,其封闭高度应高出 作业面 1.5 米 (不含 1.5 米)。

施工工地应配备相应的洒水设备,及时洒水,应按规定及时清运建筑垃圾,减少粉尘对空气的污染。

四级风以上天气不得进行土方回填、转运及其他可能产生扬尘污染的施工, 雷雨天气, 应及时进行覆盖、做好排水措施。

在施工工地车辆出入口应设置车辆冲洗设施并对进出车辆进行

冲洗, 防止车轮等部位将泥沙带出施工工地造成扬尘污染。

第五章 建筑垃圾收集运输规划

一、收运主体

建筑垃圾的收运主体为建筑垃圾产生单位,由建筑垃圾产生单位 委托有资质的收运公司进行运输。工程垃圾、拆除垃圾、工程渣土、工程泥浆的收运主体为施工单位,装修垃圾的收运主体为物业公司或居民。

二、收运模式

建筑垃圾的收运应由市场运输公司负责,其中市场运输公司须经过政府部门审核,符合标准后才能核准运营。

建筑垃圾收运可采用两种模式,一是直运模式,处置单位直接到建筑垃圾产生点收集,并运输到建筑垃圾消纳场所;二是转运模式,产生单位把建筑垃圾运送至指定的中转调配场或资源化利用设施,通过分拣或者资源化利用后,再将不可利用的建筑垃圾由处置单位和公司定期运输至消纳场。

本规划按照"政府主导、社会参与、统一管理、规范运输"的原则,根据不同建筑垃圾产生源的分布情况,结合建筑垃圾处理和资源 化利用设施服务范围,确定建筑垃圾收集模式,明确转运设施布局, 提出运输车辆要求,因地制宜地推进建筑垃圾分类收集和运输。

建筑垃圾资源化处置场及消纳场周边乡镇的建筑垃圾采用直运模式,其他乡镇的建筑垃圾采用转运模式。依托信息化管理技术与平台,建立覆盖建筑垃圾收运处置全过程的电子联单跟踪系统,实现闭环监管。

三、分类收集

建筑垃圾的收集应加强源头控制,逐步实现分流与分类,节约建筑垃圾收运和处理费用,降低后续处理难度。建筑垃圾收运、处理全

过程不得混入生活垃圾、污泥、工业垃圾和危险废物。建筑垃圾进入 收集系统前宜根据收运车辆和收运方式的需要进行破碎、脱水、压缩 等预处理,应根据其种类和资源化利用要求分类收集,分类堆放。

由于不同类别的建筑垃圾具有不同的产生来源及特性,建筑垃圾的收运设施主要包含建筑垃圾转运调配场和装修垃圾收集点。

1、工程渣土分类收集

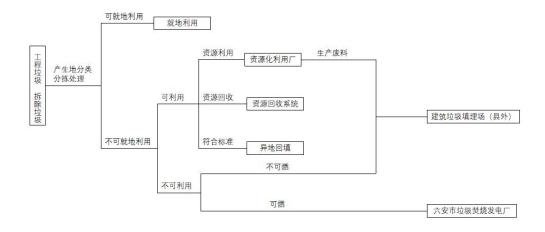
- (1) 工程渣土应当随挖随运,因特殊原因确实需要临时存放的工程渣土应在施工现场安全区域集中堆放,堆放高度不应超出围挡(墙)高度,并与围挡(墙)及基坑周边保持安全距离,与现有的建筑物或构筑物保持安全距离。
- (2) 渣土堆放高度高出地坪不宜超过3米,当超过3米时,应进行堆体和地基稳定性验算,保证堆体和地基的稳定安全。当堆场场地附近有挖方工程时,应进行堆体和挖方边坡稳定性验算,保证挖方工程安全。

2、工程泥浆分类收集

- (1) 有产生工程泥浆的施工工地应设置泥浆池,工程泥浆应通过泥浆池进行收集,泥浆池应设置防护栏,并挂设"泥浆池危险请勿靠近"安全警示牌。
- (2)施工场地设置现场泥浆脱水处置。现场泥浆脱水处置时, 宜配备收集管网、沉淀池、泥饼堆场等设施,脱水后产生的泥饼及时 外运,产生的污水经处理达标后排放或回用。

3、工程垃圾分类收集

- (1) 柱基工程的工程桩桩头、基坑工程的临时支撑可统一收集。 现场破碎、分离混凝土和钢筋时,混凝土和钢筋应分类堆放。
 - (2) 道路混凝土或沥青混合料应单独收集。


(3) 其他工程垃圾不应与工程桩桩头、支撑或道路混凝土、沥青混合料混杂。

4、拆除垃圾分类收集

- (1)建(构)筑物拆除前应清除、腾空内部可移动设施、设备、 家具等物品。
 - (2) 附属构件(门、窗等)可先于主体结构拆除,再分类堆放。
 - (3) 拆除的混凝土梁、柱、楼板构件或其他预制件可统一收集。
 - (4) 砖瓦宜分类堆放。

5、装修垃圾分类收集

收运流程:工程垃圾和拆除垃圾的收运流程示意图见下图。

- (1) 装修垃圾宜实行袋装化收集,装修过程中产生的木料、砂浆砖石、塑料、玻璃、金属等废料分类装袋。
 - (2) 有设置建筑垃圾分类收集点的,应符合下列要求:
 - 1) 能存放场所范围内的装修垃圾,同时供收运车辆进出、回车。
 - 2) 地面应硬化, 宜与场地道路同高。
- 3) 应设置标识标牌、围挡、遮雨、消防设施,宜设置视频监控设备。
 - 4)与周围环境相协调。

四、收运流程

工程渣土、工程泥浆、工程垃圾、拆除垃圾和装修垃圾应其产生 地和处置方式的不同,收运体系也有所差异。本规划将建筑垃圾收运体系分为以下四类。

1、工程垃圾和拆除垃圾

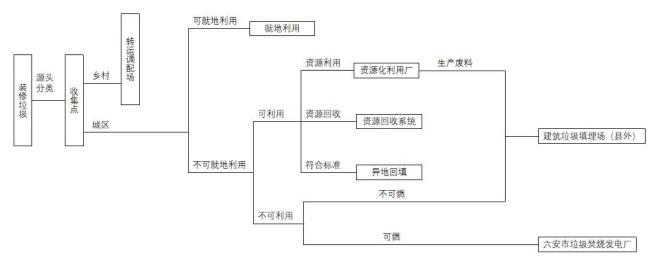
- (1) 行政许可阶段:产生单位和个人需办理相关许可手续,提 交工程相关信息,确定承运单位、运输时间。
- (2)施工阶段: 所有工程必须做到封闭施工和降尘施工,施工出入口应当硬化,设立车辆冲洗设备和沉淀池,严禁在车行道上堆放施工材料和建筑垃圾。工地开工后,工程垃圾和拆除垃圾均按照管理要求分类、集中堆放。工地安装视频监控,执法部门不定期的到工地进行巡查。
- (3)运输阶段:工程垃圾和拆除垃圾产生后,由指定的承运单位进场进行清运。建筑垃圾运输车辆审查采用半年审制,严格审查企业车辆数量、车辆密闭性和管理情况。
- (4) 处置阶段:工程垃圾和拆除垃圾必须清运至指定的处置场所进行资源化利用或填埋处置。城市管理行政执法部门建立完善日常巡查机制,查处无证处置建筑垃圾行为。处置场所安装视频设备,通过建筑垃圾信息管理系统对进出车辆和处置场运行情况进行监管。

2、工程渣土

工程渣土就地回填, 异地回填, 或直运至消纳场。

- (1) 行政许可阶段:产生单位和个人需办理相关许可手续,提 交工程相关信息,确定承运单位、运输时间。
- (2) 施工阶段: 所有工程必须做到封闭施工和降尘施工, 施工 出入口应当硬化, 设立车辆冲洗设备和沉淀池, 严禁在车行道上堆放

施工材料和建筑垃圾。工地开工后,工程渣土及时清运。工地安装视频监控,执法部门不定期的到工地进行巡查。


- (3)运输阶段:工程垃圾和拆除垃圾产生后,由指定的承运单位进场进行清运。建筑垃圾运输车辆审查采用半年审制,严格审查企业车辆数量、车辆密闭性和管理情况。
- (4) 处置阶段:工程渣土必须清运至指定的消纳场或用于土方平衡调配,以及其他能够资源化利用的场所。城市管理部门建立完善日常巡查机制,查处无证处置建筑垃圾行为。处置场所安装视频设备,通过建筑垃圾信息管理系统对进出车辆和处置场运行情况进行监管。

3、工程泥浆

工程泥浆应在施工现场设立沉淀池,经脱水预处理后形成干泥,再按照工程渣土流程运送至消纳场或填埋场。

4、装修垃圾

装修垃圾的收运流程示意图见下图。

(1) 施工阶段

居住区内设置建筑垃圾分类收集点,产生单位或企业在内部划出区域作为临时堆放场地,产生的建筑垃圾需进行分类、袋装,堆放与集中在收集场地,由住建局进行指导与监督,做好建筑垃圾分类堆放

和日常管理服务工作。对三无小区或条件有限的区域,可以采用定时或预约上门收集等方式解决建筑垃圾临时堆放问题。

(2) 运输阶段

产生单位(个人)或物业公司委托有资质的运输企业从建筑垃圾分类收集点运输至资源化利用厂。城市管理部门同时对作业公司的运输车辆进行审查,公安交警部门对运输路线进行拟定和监管。建筑垃圾运输车辆审查采用半年审制,严格审查企业车辆数量、车辆密闭性和管理情况。

(3) 处置阶段

装修垃圾分类清运至指定的处置场所进行资源化利用或填埋处 置。处置场所安装视频设备,通过建筑垃圾信息管理系统对进出车辆 和处置场运行情况进行监管。

(4) 执法检查

针对偷倒乱倒装修垃圾的行为由城市管理部门依法依规进行处罚。

五、收运要求

- 1、建筑施工中产生的工程渣土、工程泥浆、工程垃圾、拆除垃圾及装修垃圾,在运输过程中要实行分类运输,不得混装混运,防止环境污染。加强运输环节新技术的推广应用,让运输变得更高效环保。建立台账管理制度,如实记录运输的建筑垃圾来源、种类、数量、运输路线及时间等信息,并定期上报至城市管理部门。
- 2、公安交警部门加强对建筑垃圾运输车辆非法改装、超速超载 及不按规定路线和时间行驶等违法违规行为的监督执法检查,严格执 行建筑垃圾运输企业准入要求,对不落实《建设部关于纳入国务院决 定的十五项行政许可的条件的规定》要求和不履行责任的运输单位,

依法依规进行行政处罚。

- 3、建筑垃圾运输车辆应安装全密闭装置或密闭苫盖装置、行车 记录仪和相应的监控设备,严禁运输车辆沿途泄漏抛洒。建筑垃圾运 输车辆应按照交管部门、综合执法部门指定的行驶路线及时间规范收 运。建筑垃圾运输企业要加强对所属驾驶人员和车辆的动态管控,建 立运输安全和交通违法考核机制。
- 4、实行建筑垃圾运输车辆总量控制。建筑垃圾运输车辆总量应保持在合理范围,确保能满足实际工作和市场的需要,原则上现有燃油车数量只减不增,新增新能源车优先纳入名录备案管理不受总量控制,积极推动运输车辆新能源化和标准化。
- 5、建筑垃圾运输车辆应容貌整洁、标志齐全,车厢、底盘及车 轮无大块泥沙附着物。
- 6、工程泥浆在进入收集系统前宜进行压缩脱水,未压缩脱水的工程泥浆运输应采用专用密闭罐车;其他建筑垃圾运输宜采用密闭厢式货车,采用散装运输车时,表面应进行有效遮盖,不得裸露。
- 7、运输车辆车厢盖宜采用机械密闭装置,开启、关闭动作应平稳灵活,车厢底部应采取防渗漏措施。
- 8、运输车辆驶离装载现场前,应检查厢盖是否密闭到位,车厢 栏板锁紧装置是否可靠有效。
- 9、建立建筑垃圾运输单位考核标准,严格运输车辆达标、建筑垃圾准运核准办理、规范行驶、达标排放、车辆定位等内容,定期进行考核评分,并纳入建筑业诚信体系管理。
- 10、实行建筑垃圾清运"联单"管理制度,构建多部门联合执法机制。打通建筑垃圾排放运输许可与道路通行审批联动环节,探索建立"排放证、运输证、通行证"三证合一的准运模式。

六、收运队伍建设

收运体系的涉及主体为建筑垃圾产生企业、拆迁企业、建筑垃圾运输企业、建筑垃圾终端处置企业和政府部门。因此收运队伍建设的目的是为了协调各收运主体的工作,使各收运主体更加规范、便捷。

1、收运服务公司管理人员与调度人员

源头控制是建筑垃圾质量得以保证的关键,为保障收运地点、数量准确性,采用信息化管理系统及时将信息反馈给收运服务公司管理人员与调度人员,以便根据情况,安排收运车辆,使车辆不空跑,收运工作有的放矢。

2、监管部门

收运体系的监管部门包括城市管理部门、公安交警部门等。公安 交警部门负责通行时间、行驶路线、车辆管理,城市管理部门负责建 筑垃圾运输车辆密闭性的监察和运输企业资质的审查。

3、收运车辆

建筑垃圾由办理处置核准许可、备案登记的车辆进行运输。 规划收运车辆的标准如下:

- 1)建筑垃圾收运车辆应采用列入国家工业和信息化部《车辆生产企业及产品公告》内的产品,车辆的特征应与产品公告、出厂合格证相符,应满足国家、行业对机动车安全、排放、噪声、油耗的相关法规及标准要求。
- 2) 车辆标识标准: 收集运输车中大型建筑垃圾运输车辆后箱板 应设置黄色的号牌放大标识区域,位于后箱板上部、左右居中。收集 车辆车身侧面喷涂"建筑垃圾收集"字样,运输车辆车身侧面喷涂"建 筑垃圾运输"字样,直运车辆侧面喷涂"建筑垃圾收运"字样,采用 白色黑体字。收集运输车辆应标识明显的分类收集、运输标识,并保

持全密闭, 外观整洁, 无大块泥沙、泥土等附着物。

- 3)新型智能化密闭车辆与旧建筑垃圾运输车辆相比,密闭性能更好,噪音更小,且拥有监控系统。监控系统由车载卫星定位系统和车载影像系统等组成,并应能接入城市建筑垃圾大数据监管平台。监控系统可实时查询每台车辆的精确位置、运输时间、行驶速度、行驶路线等信息,且可设置电子围栏,进行线路控制;并可预设车速,实现车辆超速报警功能,实现精准管理。
- 4) 建筑垃圾清运车辆应保持车身、车底、车轮干净整洁。在建筑垃圾资源化处理厂应设置洗车台,每次建筑垃圾运输车出厂时必须过洗车台,保持车辆干净整洁,防止运输时产生道路扬尘。
- 5)建筑垃圾清运车辆应定期进行维修和保养。城市管理部门需 对建筑垃圾运输车辆定期进行检查和监督。
- 6)根据国家对环保的要求,未来建筑垃圾运输车辆将按比例推 广实验新能源和纯电动建筑垃圾运输车辆。

七、收运交通安全管制

1、明确管理部门和管理人员的工作职责

规划建议安排专人进行行车安全生产管理,明确了行管部门的安全生产工作职责后,督促运输企业完善安全生产责任制度,落实工作职责,完善安全措施,并以此为依据,切实地开展好监督检查工作。

2、车辆安全维护

坚持"三检"即出车前,行车中,收车后,检视车辆的安全部件连接的紧固情况。保持"四清"即机油、空气、燃油滤清器和蓄电池的清洁。防"四漏"即漏水、漏油、漏气和漏电。对车辆润滑油、燃油、冷却液、轮胎气压进行检视补给。对车辆制动、转向、传动、灯光等安全部位及发动机运转状态进行检视。

3、从业人员安全教育

目前来讲,运输驾驶人员普遍素质偏低,这是引起事故的主要原因之一,所以要高度重视对驾驶人员的技术和专业素质的培养。不断强化安全教育,慢慢在无形中提升驾驶人员的综合素质,使驾驶人员自觉遵守安全规章制度和操作规程。

4、完善安全防范措施

交通运输本身就存在不安全因素,具有一定的风险性,所以完善安全防范措施是规避风险降低事故发生率的有效途径。建筑垃圾收运企业在交通安全运输管理上需要严格遵守《道路交通安全法》,不断完善交通运输安全方法措施。需要定期开展安全运输检查,及时消除事故隐患,有效遏制安全事故的发生。

5、安全监控智能化

合理利用先进的科学技术,加强车辆和驾驶员动态管理,对车辆超速、超载等违章行为进行监控,确保行车安全和驾驶人员的生命安全。

6、坚持运输行业管理,整顿和规范运输秩序

以"统一开放、公平竞争、规范有序"为中心,监理道路运输市场体系。在道路运输业管理工作中。严厉打击无牌、无证等非法运营行为,净化收运队伍。

八、收运信息化管理

1、收运流程信息监管

舒城县建筑垃圾全过程监管平台,通过实时监控、全程定位、电 子围栏等信息化手段,实现对施工工地、运输车辆及消纳场全过程监 管,将建筑垃圾治理监管工作从传统形态监管向数据精准监管转变, 整合源头建立多点监管、在线联动、实时追踪、全域管控、闭环处理、 失信惩戒一体化的智慧管理模式。通过建设,打造出大数据支撑、网 络化共享、智能化协作的可复制、可推广的建筑垃圾全流程监管平台, 全面提升建筑垃圾处置管理能力。一是实现实时跟踪。运用北斗系统 平台及北斗车载终端设备实现对建筑垃圾运输车辆管理,通过对车辆 监控与识别, 增强车辆信息快速、准确、可靠、统一的管理能力, 并 对渣土车动态信息实行动态跟踪、监控、识别、管理等功能,提供统 一的服务。二是实现在线审批。分配各运输企业系统账号,每日开证 由运输企业通过系统申报转运信息(车辆、出土点、消纳场、路线信 息),城管部门在线审批,符合出土要求的通过后由系统将电子核准 证自动下发至当日建筑垃圾清运车辆。三是实现快速查处。在主城区 实行"一级监督、分级指挥、按责处置"的管理机制,建立统一的建 筑垃圾全流程监管平台,确保在建筑工地、道路施工现场、居住小区 等建筑垃圾的产生源头能及早发现、督促整改和避免违章情况的发 生:针对不按规定路线转运:转运过程篷布未密闭抛洒滴漏:不按指 定场地违规倾倒:不遵守每日规定作业时间违规作业:城区转运超速、 危险驾驶等行为进行实时监管,确保执法部门对运输车辆清运过程的 违章能尽早发现、即时取证并现场上报相关部门、及时处理和处罚, 实现建筑垃圾运输源头和过程管理并进。四是实现信息化管理。以数 据为依据,实时监控管理车辆的运行情况,用量化数据评定企业的服 务质量及服务资格,实现城市建筑垃圾运输车辆运行、识别、服务、 安全、遵章的信息化管理。

2、收运需求信息发布

完善社会力量建设舒城县建筑垃圾信息化平台建设,细化建筑垃圾类别。增加宣传力度,鼓励建筑垃圾产生企业、建筑垃圾处置企业和建筑垃圾运输企业发布供求信息,使建筑垃圾收运体系更加信息化

发展。

3、建筑垃圾运输车辆信用系统

根据违章的性质和类别进行统分,严重者列入黑名单,设定禁止运输期限,对使用黑名单车辆的企业和工地进行相应处罚。

九、收运线路

建筑垃圾运输车辆属于特殊行业运输车辆,收运线路制定的原则有:

- (1) 就近运输、减少成本;
- (2) 允许全天收运, 但限行时段和限行路段除外;
- (3) 允许相邻城区协同推进资源化利用的跨区收运。

综上,本规划要求建筑垃圾收运路线必须严格按照报审运输路线 行驶,不得在公安交警部门规定的限行路段、限行时间内通行。

十、收运设施规划

1、分类收集点

针对装修垃圾的收集,设置装修垃圾分类收集点。县城区分类收集点结合生活垃圾收集点进行布置,各乡镇根据实际情况布置装修垃圾分类收集点。工程垃圾、拆除垃圾和工程渣土(含泥浆)收集点设在施工场地,由施工单位进行分类收集、运输和处置,不再单独设置收集点。

(1) 布置原则

便收利运:考虑群众的投放习惯,结合最佳收运路径,科学合理的布点。

分类收集:在建筑垃圾分类收集点设立醒目的标识牌,要求分类 袋装,不得混入生活垃圾和有害有毒危险废弃物。

安全可行: 落实建筑垃圾防尘、防渗及防溢措施。及时清运,隔

离作业防止扩散污染周围环境。

(2) 技术要求

装修垃圾分类收集点主要用于收集居民区装饰、维修及拆除等过程中产生的装修垃圾。每个小区、行政村(社区)原则上都应设置 1 座建筑垃圾分类收集点,新建居住小区应在规划建设时同步配套设置若干场地作为分类收集点,并与小区一并投入使用,新建公用区域的分类收集点可在工地临时设置。场地平整并硬质化,装卸垃圾时应洒水降尘。居民将装修垃圾进行分类装袋捆扎,堆放到指定的分类收集点,由居民或物业公司定期收运至建筑垃圾转运调配场或资源化利用场进行处理。要求新建小区的建筑垃圾分类收集点应每周至少进行一次收运,建成五年以上的小区的建筑垃圾分类收集点应每月至少进行一次收运。

(3) 恢复和利用

分类收集点属于临时用地,对于完成转运后不再投入使用的场地 进行修复及土地重新利用:

- 1) 场地土壤检测和修复目的。对场地进行土壤检测,根据土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600—2018)规定:工业用地土壤污染物浓度控制要求取样、分析、给出调查报告,并制定修复方案进行场地修复,使之达到该标准中工业用地的要求,实现地块的重新利用。
- 2) 常用修复技术根据。《污染场地土壤修复技术导则》 (HJ25.4-2019) 规定: 常用的污染场地修复技术包括挖掘、稳定/固化、化学淋洗、气提、电动、热处理、生物修复等。
- 3) 土地重新利用。场址土方填筑完成并验收合格后,即可进行 地块规划设计,然后进行场地平整、路网建设、通水、通电等基础建

设,建设完成后即可进行土地的重新利用。

(3) 建设规模

结合居民的生活垃圾收集点进行布置,各乡镇根据建筑垃圾产生情况建设装修垃圾分类收集点。

(4) 运营与维护

- 1)居民将打包好的建筑垃圾自行投放至分类收集点内,保持场地整洁,无撒漏垃圾,无堆积杂物。
 - 2) 建立健全各项管理制度,设施标识标牌齐全,便于分类堆放。
- 3) 堆放一定数量后,由居民或者物业公司联系收运企业将建筑 垃圾清运到指定的资源化处理厂和消纳场。可根据堆积量灵活调整清 运频次,保障居民有整洁卫生的环境。
- 4)收运车辆应根据进场证明进场,实行"一车一单"制度,分类收集点管理人员应对清运车辆进行登记、驾驶员签字确认。
- 5) 严禁将生活垃圾、工业固废、危险废物等混入建筑垃圾,根据情节严重程度,报有关部门处理。
- 6) 应保持场地内通道畅通、干净,规范设置交通指示标志,危险路段应设置危险标志,管理人员需及时排查和处理各种安全隐患,做到安全规范堆放建筑垃圾。

2、建筑垃圾转运调配场

针对舒城县产生的建筑垃圾,设置建筑垃圾转运调配场。工程垃圾、装修垃圾、拆除垃圾通过建筑垃圾转运调配场转运至消纳及资源 化利用处置场进行处置。工程渣土(含泥浆)转运至消纳场进行处置。

建筑垃圾转运调配场主要用于建筑垃圾(包括工程渣土)的集中、前端分拣,及暂时无法进行利用的建筑垃圾和运输距离远、需要中转的建筑垃圾的临时堆放。建筑垃圾转运调配场内可设置分拣场地,将

进场垃圾中可利用的物质分拣出来分类堆放,待分拣完成后,有价值的物质进入废品回收体系,其他可资源化利用的建筑垃圾运输至建筑垃圾资源化利用厂,装修垃圾分拣后的危险废弃物及有害垃圾进入危废处理设施。

(1) 布置原则

统筹设置:综合考虑产生量、收(转)运能力及运距、处置方式、环境影响、群众意愿等因素,科学选点,适当规模、适当数量设置,力求设置数量与实际需求基本匹配。

严格控制: 严格遵守国家、省市有关法律法规规定,按规定的要求开展报批管理,经审核、批准后方可设置。禁止未经批准擅自设置,切实加强对违规堆放场所的日常监管,依法严查违规设置、不规范设置、安全环保管理不到位等突出问题,确保设置规范、管理到位。

安全运行:遵循"安全第一"原则,严格按照法律、法规、规定的安全管理要求。建设运行主体单位必须制定安全、环保事故处置预案,明确现场管理安全环保责任,落实场所安全环保管理措施,常态化组织安全环保隐患排查及整改,严防发生安全生产事故和环境污染。

(2) 技术要求

- 1)建筑垃圾可采取露天或室内堆放方式,露天堆放的建筑垃圾应及时覆盖。
- 2) 建筑垃圾堆放高度高出地坪不宜超过3米,当超过3米时, 应进行堆体和地基稳定性验算,保证堆体和地基的稳定安全。当堆场 场地附近有挖方工程时,应进行堆体和挖方边坡稳定性验算,保证挖 方工程安全。
 - 3) 建筑垃圾转运调配场应采用硬化地坪, 其标高应高于周围地

坪标高 15 厘米以上,建筑垃圾转运调配场四周应设置排水沟,并满足场地雨水导排要求。

- 4) 建筑垃圾转运调配场应分类设置并标记明显。
- 5)建筑垃圾转运调配场内应设置场区道路,连接场内各堆放区与场外市政道路。
- 6) 建筑垃圾转运调配场应配备装载机、推土机等作业机械,配 备机械数量应与作业需求相适应。
- 7) 生产管理区应设置在分类堆放区的上风向,宜设置办公用房等设施。中、大型规模的中转调配场宜设置作业设备、运输车辆的维修车间等设施。

3、规划布局

序号	单位	数量	规划布局情况
1	城关镇	0	直送城区建筑垃圾分拣中心
2	干汊河镇	1	原干汊河镇垃圾中转站
3	万佛湖镇	1	龙河村胜利组原 S317 省道旧加油站旁
4	张母桥镇	1	位于长堰村部对面空地(原张母桥中学闲置地块)
5	山七镇	1	位于集镇污水处理厂附近空地处
6	晓天镇	3	1、和岗村月行组路口; 2、和岗村马道组二桥上路边; 3、三元村张屋组 105 国道边老砖厂
7	河棚镇	1	位于黄河村石冲组路边
8	桃溪镇	3	桃溪镇 3 个(红光卫庄垃圾中转站、G206 和襄高速高架桥下、白鱼喻圩)
9	千人桥镇	1	位于千人桥镇文化广场东南侧
10	杭埠镇	1	位于杭埠镇东盛北路基督教堂对面
11	百神庙镇	3	1、位于百神庙镇街道中心公园边;2、位于周公渡街道杨圩大桥旁;3、白马凼老街北边。
12	南港镇	2	1、南港宾馆后垃圾中转站;2、南港治超站后面
13	舒茶镇	2	1、舒茶镇 206 国道集镇污水处理厂。2、龙王庙村三坝组垃圾中转站边
14	汤池镇	2	1、西沙埂村中石化加油站对面空地;2、三江村环湖路边岗头组

15	棠树乡	2	1、西塘村垃圾收集点旁;2、在洪院村垃圾收集点旁。
16	高峰乡	1	位于古塘村与陶湾村交界沿河组
17	阙店乡	1	位于阙店乡阙店村部往北 200 米处
18	柏林乡	1	位于国道 237 恒创公司院内
19	春秋乡	1	位于春秋乡仓房村楼塘组舒棚公路边
20	五显镇	2	1、位于上河村龚家冲口大桥西边; 2、韦洼村三房组 G346 国道南边
21	庐镇乡	1	位于庐镇乡二河村沿 237 省道大桥旁
22	开发区	1	位于纬一路与经一路交口东侧
	合计	32	

4、选址要求

依据"多规合一"要求,结合《舒城县国土空间总体规划

(2021-2035年)》中的"三区三线",用地选址禁止占用永久基本农田和生态红线等,建筑垃圾转运调配场的用地性质可以为临时性用地。县自然资源和规划局应当会同行政审批部门、住房和城乡建设局、城市管理局、生态环境局等相关部门商定建筑垃圾转运调配场选址。

5、运营与维护

- (1) 应建立健全各项管理制度,设立专职管理人员,负责日常监管,督促生产运营管理。
- (2)转运车辆进出应执行"一车一单"的制度,经核准证件后,才可放行。
 - (3) 无关人员不得进入场内进行捡拾废品等活动。
 - (4) 应配备与施工规模相适应的分类堆放区和作业人员。
- (5) 应配备相应的作业机械、照明、消防、降尘、降噪、排水等设施设备。
 - (6) 应定期保养和及时维修站内设备设施。
- (7) 进场的建筑垃圾应根据工程渣土、工程泥浆、工程垃圾、 拆除垃圾和装修垃圾的标准分类堆放,并设置明显的分类堆放标志。

(8) 转运调配场内堆放时可采取室内或露天方式,露天堆放的建筑垃圾应及时遮盖。

第六章 建筑垃圾利用及处置规划

一、处理方式

(一) 无害化处置

1、工程回填

工程回填是指利用路基施工、桩基填料、地基基础、土地平整、堆山造景、综合管廊、矿山石场治理等生态修复工程项目回填消纳建筑垃圾,主要是消纳工程渣土。建设工地的渣土回填是最常用的建筑垃圾处理方法。将建筑垃圾加工成市政管网的回填材料是建筑垃圾回填的另一种重要途径,给水、雨水、污水、电力、通信、燃气等市政行业的管网铺设、维护过程中不可避免地要实施回填作业,如果能够将建筑垃圾加工成合乎要求的回填材料以代替中粗砂、砾石等传统的回填材料,即可大大减少建筑垃圾的填埋量。

2、固定消纳

由于建筑垃圾属于惰性无机物,因此可采用陆域安全堆填进行无害化处置,也是目前最为成熟、最主要的处理方法,是一类保障设施。但目前采取陆域安全堆填方式存在两个方面的问题:一是采用陆域安全堆填方式处理建筑垃圾将占用大量土地资源,这与舒城县土地资源紧缺存在矛盾,若占用建设用地贮存建筑垃圾显然是不合理的,且占用生态绿地处理建筑垃圾显然又是对生态环境的破坏;二是即使在陆域安全堆填方式暂时可行、必要的前提下,由于面临着基本农田保护、自然景观保护、国家森林公园保护、水源保护、河道及水库保护等的多重限制,消纳场的选址也是捉襟见肘、日渐困难。因此,可将固定消纳场定位为服务政府重大建设工程的应急储备设施或建筑垃圾中暂时无法综合利用的惰性组分的兜底设施。

(二) 资源化利用

1、制造再生建材

可通过对建筑垃圾科学的分类、分拣、破碎及筛分后,结合各种产品质量要求,加入适量的水泥和添加剂,生产出各种新型环保建材,实现循环经济。

2、泥砂分离

可将工程渣土分选分离生产出砂粒(含泥量一般需小于 3%), 用作建筑用砂(应符合国家标准《建设用砂》(GB/T14684-2022)等 相关标准要求),还可将工程渣土分离出的黏土与园林垃圾腐殖质土 混合制备园林种植土,实现固废协同资源化利用。

3、环保烧结

可将工程渣土经过环保烧结工艺处理,生产出符合《环保烧结普通砖》(GB/T5101-2017)、《环保烧结空心砖和空心砌块》

(GB/T13545-2014)等标准的烧结制品,实现建筑垃圾资源利用最大化。

	建筑垃圾处置方	式规划表
计分切		

序号	建筑垃圾 类别	排放去向规划(指导性)	主要处理方式
1	工程垃圾	资源化处理设施、原位 资源化处理、临时消纳 场	固定式资源化处理+移动式资源化处理,无资源化处理条件的填埋消纳
2	拆除垃圾	资源化处理设施、原位 资源化处理、临时消纳 场	固定式资源化处理+移动式资源化处 理,无资源化处理条件的填埋消纳
3	装修垃圾	临时消纳场、资源化处 理设施	填埋消纳+资源化处理
4	工程渣土	可控自行调配、临时消 纳场	综合利用+填埋消纳
5	工程泥浆	临时消纳场、原位处理 并综合自用	填埋消纳,有条件的可以进行综合利 用

二、处理策略和方案

(一) 处置策略

1、工程垃圾和装修垃圾

1) 特点分析

楼盘开发及各类装修等垃圾主要由散落的砂浆和混凝土、剔凿产生的砖石和混凝土碎块、打桩截下的钢筋混凝土桩头、废金属料、竹木材、各种包装材料组成。随着我国城市化进程的发展,装修垃圾产生量增长所带来的环境和社会问题愈发凸显。其作为建筑垃圾重要且较为特殊的部分,组成成分具有不稳定性、复杂性及污染性。根据性质不同,可将装修垃圾概括为四大类:可进行资源回收的非惰性组分、可资源化利用的惰性组分、危险废物及可燃轻物质。

2) 综合利用

工程垃圾和装修垃圾的组分不稳定且相对复杂,部分含有一定量的有毒有害成分,尤其装修垃圾的资源化利用具有明显公益性,因此需政府给予一定的政策支持,如在资源化利用设施建设用地上给予划拨,将装修垃圾、工程垃圾和拆除垃圾的处置打包进行特许经营,或是将装修垃圾的处置与大件垃圾处置、再生资源的回收等收益高的内容统筹考虑。

在资源化利用设施内进行分类分选后,工程垃圾和装修垃圾中的金属、木材、塑料、纸、塑料等可进行回收利用的组分进入再生资源回收渠道;混凝土、沥青、砖瓦、陶瓷等可资源化利用的惰性组分按照拆除垃圾的资源化利用方式进行利用;矿物油、废日光灯管、废油漆渣、废有机溶剂等危险废物进入危废处置渠道;纸片、布料、木屑等可燃轻物质进入生活垃圾处置渠道。

2、拆除垃圾

(1) 特点分析

我国拆除垃圾特点,主要为:、

由于我国建筑物平均使用寿命只为设计寿命的 50%不到,被拆建筑大多为七、八十年代的旧建筑物,达 70%以上;

建筑物多以烧结黏土砖和混凝土预制构件组合的混合结构为主, 砌筑抹面以水泥砂浆、水泥石灰砂浆为主, 在市郊周边仍有极少使用石灰泥浆。

八十年代后期建筑,建筑结构、建筑材料均发生了质的变化。除多层砖混合结构外,大量发展了全混凝土现浇框架剪力墙结构、混凝土框架结构、钢结构等。废旧建筑物垃圾现状见图,各组分参考含量见表。

混凝土 渣土 碎砖石 木材 玻璃 废金属 塑料 有机杂质 其他 54.0% 9.0% 8.0% 2.0% 7.5% 1.0% 13.0% 1.5% 4.0%

拆除垃圾成分含量(参考)

由于拆除垃圾资源化利用市场化程度较高,社会资本有着强烈的 意愿参与,因此其处置遵循"能用尽用、特许经营、监督规范、市场 运营"的原则解决。为引导市场良性竞争和确保拆除垃圾得到有效的 无害化、资源化利用和减量化处理,政府可通过采取政策和制度的设计,统筹优化资源化利用设施布局,引导规范资源化利用设施的运营, 扶持建筑垃圾资源化利用行业健康发展。

(2) 综合利用

拆除垃圾中的混凝土、砖瓦等经破碎加工后可作为生产再生建材的原材料,是一类具有很大资源化利用空间的建筑垃圾,拆除垃圾品质越高意味着市场价值越高。因此,拆除垃圾应优先选择资源化利用。 不可利用的可燃物进去垃圾焚烧发电厂。

3、工程渣土

(1) 特点分析

对于工程渣土比较成熟的处理方式主要有基坑回填、道路工程、

场地地坪抬高等需土工程,少量去往资源化利用厂。

(2) 综合利用

源头减量后,将不可避免产生的工程渣土进行综合利用。工程渣土根据土质性质的不同,可采取不同的资源化利用技术:

- 1) 泥砂分离,通过筛分、水洗、压滤等环节,将工程渣土分为 泥、砂两个部分,将分离出的黏土与园林垃圾堆肥腐殖质土混合制备 园林种植土为解决这一问题提供了有效路径。
- 2) 固化和压制,通过添加固化增强剂和干燥防裂剂,压制生产为建筑用砖、再生砌砖、免烧瓷砖、文化装饰砖等产品,目前处于试验阶段。
- 3) 环保烧结,以黏土为原料,经成型和高温焙烧制得用于承重和非承重结构的各类块材、板材。
- 4)按照土质特性进行分类利用,即挑选出其中适合种植的种植土和制作陶瓷的陶瓷土等,这对土质要求高,分类利用率比较低。

(二) 处置方案

工程渣土、工程泥浆可用于无害化堆填处置、域内平衡、跨区域调剂平衡、生态修复利用、场地平整和其他资源化利用。工程泥浆应在产生工程泥浆的现场采用压滤的处理工艺,将固液相分开。液相检测达标后排放,不达标需重新处理;固相尽量用于原位回填,无法回填的部分运往渣土消纳场处置。

装修垃圾及工程垃圾可用于资源化利用和无害化堆填处置。

拆除垃圾可用于资源化利用和无害化堆填处置。

本次规划引导建筑垃圾在源头减量的基础上优先考虑资源化利用,处理及利用优先次序宜按下表:

建筑垃圾处置和利用优先次序

工程垃圾、装修垃圾	资源化利用、无害化堆填		
拆除垃圾	资源化利用、无害化堆填		
工程渣土、工程泥浆	综合利用(域内土方平衡、生态修复利用、跨区调剂平衡)、无害化堆填、资源化利用		

三、处置规划

1、建筑垃圾消纳及资源化利用处置场规划

- (1) 建筑消纳场和建筑垃圾资源化利用处置场选址原则
- 1) 应符合《舒城县国土空间总体规划(2021-2035年)》以及国家现行有关标准的规定。
- 2) 应与当地的大气防护、水土资源保护、自然保护及生态平衡 要求相一致。
- 3) 工程地质与水文地质条件应满足设施建设和运行的要求,不 应选在发震断层、滑坡、泥石流、沼泽、流沙及采矿陷落区等地区。
- 4) 应交通方便,运距合理,并应综合考虑服务区域内建筑垃圾存量及增量估算情况、建筑垃圾收集运输能力,资源化利用厂还应考虑产品出路、预留发展等因素。
 - 5) 应有良好的电力、给水和排水条件。
- **6**) 应位于地下水贫乏地区、环境保护目标区域的地下水流向下游地区及夏季主导风向下风向。
- 7)厂址不应受洪水、潮水或内涝的威胁。当必须建在该类地区时,应有可靠的防洪、排涝措施,其防洪标准应符合现行国家标准《防洪标准(GB50201-2014)的有关规定。
- 8) 宜在城市规划建成区外设置,应选具有自然低洼地势的山坳、 采石场废坑、符合防洪要求、具备运输条件、土地及地下水利用价值 低的地区,并不得设置在水源保护区、地下蕴矿区及影响城市安全的 区域内,距居民居住区及人畜供水点不应小于 0.5 千米 (不含 0.5 千 米)。

(2) 建筑垃圾消纳场规划

根据舒城县建筑垃圾量预测,规划在南港路与梅河东路交口东北角设置一处建筑垃圾消纳场。占地面积7.13公顷。基本情况如下:

- 1) 总用地面积: 7.13公顷(107亩)。
- 2) 拟选厂址:南港路与梅河东路交口东北角。
- 3) 用地性质:耕地、林地、工业用地、陆地水域。
- 4) 服务范围:舒城县县域

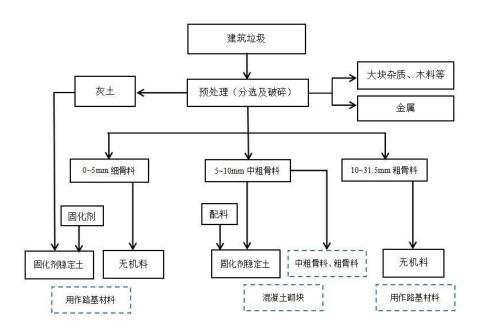
(3) 建筑垃圾资源化利用处置场规划

现状舒城县建筑装潢垃圾分类处置资源化利用中心,位于舒城县城关镇舒茶路东侧,主要处理工程垃圾与装修垃圾。处理规模约8万吨/年。

规划新建一处资源化利用中心,位于舒城县污水处理厂东侧,建筑垃圾处理规模达到约20万吨/年。基本情况如下:

- 1) 总用地面积: 1.62 公顷(24亩)
- 2) 拟选厂址:舒城县污水处理厂东侧,现状城东生活垃圾中转站。
 - 3) 用地性质:公用设施用地。
 - 4) 处置规模: 20万吨/年

5) 服务范围:舒城县县域



2、建筑垃圾资源化利用工艺流程

建筑垃圾的资源化利用主要是通过对建筑垃圾分级破碎、筛分,生产出取代部分天然砂石的再生骨料,一部分骨料作为企业深加工原材料,用以生产标砖、砌块、预拌砂浆、道路材料和复合材料等产品,剩余部分作为商品骨料销往其他混凝土搅拌站、预拌砂浆站、道路结构基础回填等。

通过破碎筛分后的再生骨料产品输送至再生产品生产线,包括砖胎模、墙板生产线、道路材料搅拌站、预拌砂浆生产线以及混凝土原料。这些生产线合理布局,保证各生产线有机链接,使得从初始原料到最终产品形成网络式生产模式,从而将建筑垃圾最大程度转化为各类再生环保新型建材产品。

建筑垃圾资源化工艺流程总图

3、建筑垃圾资源化利用产品

(1) 再生骨料

经建筑垃圾处理系统后分选可得到不同粒径的再生骨料,再生骨料可作为生产再生绿色建材的原料使用,若用于生产再生绿色建材的再生骨料有剩余,可用于外售盈利。

(2) 道路无机材料

道路无机材料也叫无机混合料,主要用途是用于道路垫层。建筑垃圾加以筛分、破碎后一定的粒径可以制成路基垫层原料。建筑垃圾处理后筛分出的渣土可掺入水泥和粉煤灰,加水拌匀碾压制成二灰土,可作为路用承重材料。

建筑垃圾骨料可作为路基填充料,当其中砖石块含量较多,其粉碎后的骨料,首先根据现行的行业标准《公路工程集料实验规程》的有关规定进行试验,当其性能满足相应公路设计的相关要求时,用于路基垫层。

(3) 再生烧结砖、混凝土砖

建筑垃圾再生骨料可以用于生产符合标准再生混凝土砖,包含地面材料生态透水砖、浇筑透水砖、透水路牙砖三种生态透水砖,被广

泛用于广场、人行道、慢车道、露天广场、园林、护坡、护基、高速公路和立交桥等。工程渣土中的青泥、红泥可以用于制作符合标准的再生烧结多孔砖,目前生产技术成熟。

(4) 预拌混凝土

预拌混凝土是在工厂或车间集中搅拌运送到建筑工地的混凝土。 混凝土集中搅拌有利于采用先进的工艺技术,实行专业化生产管理。 设备利用率高,计量准确,将配合好的干料装入混凝土搅拌输送车, 因而产品质量好、材料消耗少、工效高、成本较低,又能改善劳动条件,减少环境污染。

建筑垃圾经破碎筛分后的再生细骨料可以部分替代天然砂石用于生产再生预拌混凝土。

(5) 装配式建筑预制构件

混凝土预制构件是指在工厂中通过标准化、机械化方式加工生产的混凝土制品。无需工地现场制模、现场浇注和现场养护,预制件尺寸及特性的标准化能显著加快安装速度和建筑工程进度。2016年9月27日国务院出台《国务院办公厅关于大力发展装配式建筑的指导意见》,对大力发展装配式建筑、

(6) 再生种植土

将建筑废物分选、粉碎后剩余的淤泥、石粉为原料,添加其他各种废物(主要包括污水处理厂的污泥,酒厂、食品厂的废渣)和泥炭上微量元素,按一定的质量比例,经混合搅拌而成建筑垃圾再生种植土,除具备天然土壤的特性外,还具有肥效高、透气好和保水强的特点。

(7) 其他

渣土可用于筑路施工、桩基填料、地基基础等。对于废弃木材类

建筑垃圾,尚未明显破坏的木材可以直接再用于重建建筑,破损严重的木质构件可作为木质再生板材或造纸等的原材料。废钢材、废钢筋及其他废金属材料可再利用或回炉加工。

四、建筑垃圾存量治理规划

- (1)按照属地管理原则,相关单位要加快非正规建筑垃圾堆放点摸排工作,重点排查区域是城乡结合部、环境敏感区、主要交通干道沿线,查清现有非正规建筑垃圾堆放点数量、规模,并应建立好台账,摸排工作结束后,应形成本辖区内非正规垃圾堆放点排查工作情况报告,梳理整治责任单位,住建局应书面督办整治责任单位及时整改到位;住建局和属地单位应对非正规建筑垃圾堆放点整治工作情况进行现场核查,重点核查是否整改、整改是否到位、是否按要求整改、是否有新增非正规建筑垃圾堆放点等情况,对不及时整改、虚假整改、整改不到位、瞒报漏报等行为进行通报或责任追究。
- (2)对于非正规建筑垃圾堆放点应按照"一场一策"的要求,制定整治工作方案,应明确非正规建筑垃圾堆放点整治的工作目标、年度工作任务、具体责任部门、监督检查办法、整改期限等。
- (3) 应采用筛分治理的方式开展治理工作,筛分后无污染的建筑垃圾可就地回填利用或转运至建筑垃圾资源化处理设施进行处理,不可资源化利用的垃圾运至消纳处理设施进行消纳处置,危险废物运至危废处理设施进行处理,有价值物料进入废品回收体系。
- (4) 县人民政府应严格控制增量,相关职能部门应加大建筑垃圾私拉乱倒等情况的监督检查和查处力度,对违规倾倒和非法运输处置建筑垃圾的单位和个人,依法予以处罚。应加强对主要干道两侧农田、山边、沟谷等区域的重点巡查,属地单位可联合相关职能部门采取派人值守或安装视频监控等措施进行监管。

第七章 建筑垃圾监督管理规划

一、部门职责

舒城县应成立建筑垃圾污染环境防治工作专班,建立联席会议制度,由县人民政府分管领导组织召集,县住建局、县发改委、县财政局、县交通运输局、县自然资源和规划局、县生态环境分局、县公安局(交管大队)、各乡镇人民政府等部门作为成员单位。各部门具体职责分工如下:

- (1) 县人民政府:应承担建筑垃圾治理和资源化利用工作主体责任,作为牵头单位,建立健全工作机制;按照相关规划要求加快建筑垃圾处置设施建设进度,确保建筑垃圾治理和资源化利用工作有效推进。
- (2) 县住建局:负责督促施工工地硬化场地、设置冲洗设施和建筑垃圾再生产品的推广应用;负责监督区域内实行物业管理的小区物业管理单位处置装修垃圾行为。

对建筑垃圾全过程处理实施统一监督管理;负责依法查处建筑垃圾私拉乱运、随意倾倒等违法行为;负责依法查处出入城区建筑垃圾运输车辆污染道路行为。为维护城区建筑垃圾清运秩序,与住房和城乡建设、县公安局(交管大队)、交通运输、生态环境等部门采取联合执法,保障交通安全,加强综合治理,保护城市环境,共同推进城区内建筑垃圾处置管理工作。充分利用各类媒体,加强对建筑垃圾综合管理和循环利用工作的宣传。加强公众宣传教育,宣传建筑垃圾给理方面的政策法规知识,提高环境保护意识,运用电视、广播、报刊或互联网等媒体手段公开展示本规划,调动全民参与和实施。健全社会公众满意度评价机制,推动地方政府履职尽责。

(3) 县发改委、县财政局:负责牵头争取和安排中央、省、市

级专项资金支持建筑垃圾治理试点项目建设、审批服务政府投资类项目,将项目列入年度城建计划或区(市)层面统筹推进的重大项目等。

- (4) 县自然资源和规划局:负责本行政区域内消纳场的用地和规划审批等管理工作。
- (5) 县公安局(交管大队)、县交通运输局:应负责对建筑垃圾运输车辆非法改装、超速超载及不按规定路线和时间行驶等违法违规行为的监督执法检查;应强化日常检查监督,加强对建筑垃圾运输车辆管理。
- (6) 县生态环境分局:负责建筑垃圾污染环境防治的监督管理。 依法对从事产生、收集、贮存、运输、利用和处置建筑垃圾的单位和 其他生产经营者进行检查。
- (7) 各乡镇政府:按照"谁产生、谁负责"和属地管理原则, 负责对区域内建筑垃圾的产生、收集、运输、处置的全过程监督。

二、制度落实与建设

为加强建筑垃圾管理,保护和改善生态环境,持续优化建筑垃圾的处置核准(转运、资源化利用),有效评估和统计建筑垃圾产量,强化核准和监管,压实建筑垃圾的源头减量、收运管理和处置管理责任,促进建筑垃圾资源化产业发展,建立相应管理制度。

1、污染者负责制度

按照"谁产生、谁污染、谁负责"的原则,产生建筑垃圾的单位和个人具有规范清运和处置的主体责任,需缴纳相关清运处置费。在现有的基础上,逐步形成完整的污染者付费制度。如制定相关收费标准,建筑、拆迁工程按照建筑面积或产量收取清运费和处置费,居民装修按照重量或收运次数收取相关费用等。

2、生态补偿机制

按照"谁导出,谁补偿;谁导入,谁受偿"的原则,建立建筑垃圾导出区域对建筑垃圾导入区域的长效环境补偿机制,实行生态补偿机制,制定按量定补方案,尤其是对建筑垃圾消纳场所在乡、镇进行生态补偿。该补偿资金的使用原则是:专款专用、定向使用,主要用于环境质量改善、基础设施改善及居民民生改善三大方面。

3、源头责任机制

明确规定建设单位为工地建筑垃圾管理处置的主要责任人,对于不执行相关规定的工地,一律追究建设单位的责任。施工单位要切实履行市容环卫责任,落实施工工地保洁措施。工程完工应及时清理现场,平整场地和修复破损路面,保证建筑工地出入口及工地周边环境整洁。工地要安装扬尘监测监控视频设备,并联网接入城管部门建筑垃圾监控系统,依托信息管理系统,对施工工地实行实时监管。

建筑垃圾源头管控首先从源头建设项目的信息填报入手,建立健全建筑垃圾的管理台账,摸清底数和实情。规范建设项目基本信息、参建单位、运输企业、处置企业信息、垃圾种类及产量、现场分类管理、统计台账管理、污染防治与清运组织策略、末端处置措施等内容的编写要求,让建筑垃圾处置核准制度、处理方案备案制度真正发挥作用。及时更新建筑垃圾处置核准制度、处理方案备案制度真正发挥作用。及时更新建筑垃圾处置核准制度、处理方案备案制度真正发挥作用。及时更新建筑垃圾的排放核准信息和数据,为建筑垃圾全过程跟踪管理提供保障,努力实现源头排放核准数据与运输、处置数据串联一致。强化建筑垃圾的源头排放管理。

4、运输监督机制

从事建筑垃圾运输的企业应具有合法的道路运输证、车辆行驶证 以及建筑垃圾主管部门规定的自有运输车辆数量、核载吨位及密闭 化、分类运输的各项要求,应逐步完善车辆定位系统和视频监视装置 建筑垃圾运输车的年度常规检验由城市机动车检验机构结合机动车 辆安全技术检验(包括新车上牌检验)、营运车辆综合性能检验中相关检验项目进行。

建筑垃圾主管部门对申请建筑垃圾运输行政许可的企业经营者以及取得建筑垃圾运输行政许可的企业中的从业人员(包括车辆驾员、现场作业人员等),应进行相关法规、标准及操作规程方面的培训。运输单位应按核准的路线和时间行驶至批准的地点处理处置建筑垃圾,运输过程中不得超重、超载、超速,对发生人员死亡道路交通事故的运输车辆驾驶员和运输单位,应取消或限制其从事建筑垃圾运输资质,并承担相应责任。

5、联合执法制度

各相关部门要按照各自职能,对建筑垃圾产生源头、运输过程、 消纳渠道等各个环节落实严密的措施,实施严格的监管。由县人民政 府牵头,建立联席会议制度,建成由县政府主要领导负责、多部门组 成的联动机制。加强工作衔接,互通管理信息,强化日常管理,做到 既各司其职,又协同共管。

6、投诉举报制度

进一步完善相关机制制度建设,设立专门的投诉举报窗口或平台,鼓励群众对建筑垃圾偷倒乱倒、超重运输等行为进行监督,并对社会公众投诉举报的违法违规行为依法进行审查处理。违法违规行为一经查实,可依据法律采取批评教育、罚款等措施,情节严重且屡教不改的,可将责任单位名称、联系电话、责任人等信息,通过公众媒体向社会公布,并对提供有效举报信息的群众设立奖金。

三、智能管理信息系统规划

舒城县建筑垃圾全过程监管平台,通过实时监控、全程定位、电子围栏等信息化手段,实现对施工工地、运输车辆及消纳场全过程监

- 管,将建筑垃圾治理监管工作从传统形态监管向数据精准监管转变,整合源头建立多点监管、在线联动、实时追踪、全域管控、闭环处理、失信惩戒一体化的智慧管理模式。通过建设,打造出大数据支撑、网络化共享、智能化协作的可复制、可推广的建筑垃圾全流程监管平台,全面提升建筑垃圾处置管理能力。
- 1、实现实时跟踪。运用北斗系统平台及北斗车载终端设备实现对建筑垃圾运输车辆管理,通过对车辆监控与识别,增强车辆信息快速、准确、可靠、统一的管理能力,并对渣土车动态信息实行动态跟踪、监控、识别、管理等功能,提供统一的服务。
- 2、实现在线审批。分配各运输企业系统账号,每日开证由运输企业通过系统申报转运信息(车辆、出土点、消纳场、路线信息),城管部门在线审批,符合出土要求的通过后由系统将电子核准证自动下发至当日建筑垃圾清运车辆。
- 3、实现快速查处。在主城区实行"一级监督、分级指挥、按责处置"的管理机制,建立统一的建筑垃圾全流程监管平台,确保在建筑工地、道路施工现场、居住小区等建筑垃圾的产生源头能及早发现、督促整改和避免违章情况的发生;针对不按规定路线转运;转运过程篷布未密闭抛洒滴漏;不按指定场地违规倾倒;不遵守每日规定作业时间违规作业;城区转运超速、危险驾驶等行为进行实时监管,确保执法部门对运输车辆清运过程的违章能尽早发现、即时取证并现场上报相关部门、及时处理和处罚,实现建筑垃圾运输源头和过程管理并进。
- **4、实现信息化管理。**以数据为依据,实时监控管理车辆的运行情况,用量化数据评定企业的服务质量及服务资格,实现城市建筑垃圾运输车辆运行、识别、服务、安全、遵章的信息化管理。

第八章 建筑垃圾资源化利用产业发展规划

一、建筑垃圾产业体系

1、建筑垃圾产业体系的定义

根据对建筑垃圾处理产业的剖析及对产业化概念的界定,其产业化内涵为:一是从产业属性看,建筑垃圾处理应由政府统包统管的纯粹公益事业,转变为独立企业提供的社会服务产业。二是管理体制实行政企分开,政府从产业的投资者、建设者、运营者转变为市场的监督者、管理者,主要加强对建筑垃圾处理产业的管制,以确保建筑垃圾处理产业稳定地发展。三是从经营主体看,建筑垃圾处理企业实行企业化经营,不再直接靠财政拨款生存,而是通过建筑垃圾处理收费及销售建筑垃圾再生产品,在市场中生存发展。四是从市场结构看,建筑垃圾处理行业要降低进入壁垒,打破独家垄断,允许社会资金投资建筑垃圾处理设施,实行投资主体多元化。因此,我国建筑垃圾产业化的发展必须改革传统的建筑垃圾处理管理体制,使企业在政府监督管理下能够企业化经营、市场化运作。

舒城县建筑垃圾产业体系应由建筑垃圾治理全流程各环节衍生出的建筑垃圾治理相关产业链构成。其中包括源头减量环节相关的装配式建筑产业、绿色建筑产业、建筑垃圾(土方)资源交易产业等;由分类与收运环节衍生出的建筑垃圾分类回收产业、建筑垃圾运输产业等;以及由利用处置环节衍生出的资源化利用产业和终端消纳环节衍生出的填埋消纳产业等。

2、建筑垃圾产业链规划

建筑垃圾处理产业链是在建筑活动完成(资源价值的大部分转移)之后,通过对副产品(建筑垃圾)进行合理配置和利用,实现建筑垃圾资源残值的开发,将其转移到再生建材中,即建立回收——加

工——再利用一条龙式的产业关联,实现资源价值转移的最大化。通过对建筑垃圾处理产业的分析及产业链概念的认识,在此构建建筑垃圾处理产业链模型。

建筑垃圾处理产业链呈现以下两个特征:

- (1)产业链更长。建筑垃圾产业生产方式本身拉长了产业链条。 在这一过程中原来被废弃的建筑垃圾由于进行了回收加工和无害处 理,增加了生产环节,价值链相应得到延伸,同样的资源创造出更大 的价值。
- (2)价值链节点交叉、方向迂回情况增加。传统产业链通常是线性的,即围绕某一种产品进行流水线式的价值传递。建筑垃圾产业模式下,建筑原材料资源的价值利用更加充分,同样的资源为被多次利用,物质循环带来生产迂回,资源的多重开发导致资源的使用价值细分,产业链出现多次交叉。因此,建筑垃圾产业链的形状可能会呈现出网状、环型等特点。

二、建筑垃圾资源利用规划

1、建筑垃圾资源处理方式

建筑垃圾资源处理方式主要分为直接利用和资源化再生利用两种模式。

直接利用。如分选处理、一般性回填等。建筑垃圾分选主要将砖瓦、混凝土、沥青混凝土、渣土、金属、木材、塑料、生活垃圾、有害垃圾分离。其中,砖瓦、混凝土、沥青混凝土可进行中级和高级利用。而金属、木材、塑料也可以回收利用。一般性回填主要利用砖瓦、混凝土、沥青混凝土、渣土等惰性且土力学特性较好的建筑垃圾。

资源化再生利用。如加工成骨料、生产新型墙体材料、还原成水泥、沥青等再利用。可回收的建筑垃圾由获得许可证的公司经营管理,加工成骨料生产新型墙体材料等。新型墙体材料的生产工序主要包括

粗选、破碎、筛分、磁选、风选等。主要骨料产品包括 0~15mm 砖再生集料,0~5mm 混凝土再生砂,5~15mm、15~25mm、25~40mm 的混凝土再生料。这些骨料具有空隙率高的特点,适合生产混凝土砌块,建筑隔声、保温、防火、防水墙板及建筑装饰砖等墙体材料。

总之建筑垃圾的最终处理方式有很多种,不同处理方法之间的成本也不仅相同,如何合理的选择处理方式是建筑垃圾源化利用厂成本管理的主要方面。

2、建筑垃圾直接利用

(1) 工程渣土、工程泥浆的直接利用

工程渣土的利用的主要方式有:堆土造景、采石场/山体复绿、复垦耕地、公路路基等。

- 1) 堆土造景:采用堆坡造景方式,如道路旁防护绿地以30度角的斜坡堆起,则可以使得绿化面积增加约15%,而将坡做成弧形,则增加面积更多。同时在现代都市中,基本都会以种植草坪、矮灌木、高大乔木的方式逐步递进,以强调城市景观绿化层次感,而在斜坡或是弧形坡面上种植多层次植物,空间则更为立体,景观造型更为丰富。
- 2) 采石场/山体复绿:工程渣土作为采石场、破坏山体的堆土复绿,用于生态恢复。根据采石区域的高度、坡度等三维空间特征,通过垂直绿化、分层台地式覆土种植、缓坡地直接覆土种植等方式恢复被破坏自然生态面貌。
- 3) 耕地复垦:工程渣土的土虽然大都是有机质很少的生土,但这些土只要不是化工厂等污染地块挖出的,就都是未经污染的,虽然不含有腐殖质,但可以用人工的方式解决这一问题,如秸秆腐烂后混入其中,使城市弃土成为富含有机质的泥土。把经过处理的城市弃土运到农村用于耕地复垦,或者低洼低产农田的改造或耕地复垦。

- 4) 公路路基: 工程渣土可作为公路路基的垫层材料使用。
- 5) 工程回填: 作为工程所需的回填材料进行回填利用。
- 6) 垃圾填埋场覆土:工程渣土还可以作为生活垃圾填埋场的间层覆土,也可以作为生活垃圾填埋场、建筑垃圾填埋场和临时消纳场封场和生态恢复的覆土进行利用。

(2) 工程垃圾、拆除垃圾的直接利用

工程垃圾、拆除垃圾中主要为混凝土、砖块等,它们具有很稳定的结构、能够长时间的保持一定的硬度;将其用于建设中的地基可以避免风化等外界环境的干扰,起到加固地基的作用。对于它们的利用方法主要有:

- 1) 用作渣土桩填料。建筑垃圾渣土桩是通过一定的动力设备将 重锤拉高到适当高度后,失去拉力向下冲击地基,在地基坑中放入适 量的以建筑垃圾为主要原料的混凝土,经过夯实处理后能够满足加固 地基的要求。
- 2) 用作夯扩桩填料。建筑垃圾夯扩桩的施工方法是采用细长锤 在护筒通过打击而下沉,然后在护筒内将处理好的建筑垃圾等材料放 入并且夯实,形成负荷载体,最后放入钢筋并且浇筑为混凝土桩。这 种由建筑垃圾构成的桩基本上能够满足现在建筑的各种要求。
- 3)建筑物拆除垃圾中完整尺寸的砖块经收集整理一般用于建筑 施工工地的围墙、公路防护墙建设等。
- 4) 在城市兴建大型建筑、广场、市政设施时,将其作为回填材料来使用。

(3) 装修垃圾的直接利用

装修垃圾成分复杂,一般需要经过垃圾分类之后才能进行直接利用。其中主要能够直接利用的材料有砖块、混凝土、竹木、金属等。

竹木可用作模板、支撑柱的木材拆卸后,一般可以继续周转使用。对于大尺寸的竹木,经过简单加工后可以作为其他材料继续使用。对于不符合尺寸的废木材木棒以及锯末等可作为造纸原料和燃料使用,也可以作为堆肥原料和防护工程的覆盖物使用。对于废木料可以作为黏土、木料和水泥等的原料来使用制成复合材料,与普通混凝土相比,该复合材料具有质量轻,且热传导低等优点,因而可以将其作为特殊的绝热材料使用,还可将破碎的木材制造人造木砖,用于建筑门窗的安装。金属经除漆等可以直接作为原材料回收利用。

3、建筑垃圾资源化再生利用

建筑垃圾的资源化再生利用主要可用于生产再生骨料、再生砖、再生砌块、再生景观石、再生混凝土、再生稳定碎石、再生预拌砂浆等。

- (1) 再生产品利用总体要求
- 1) 再生产品用于建设项目时应满足相关标准的规定,并应遵循下列原则:
 - 1) 产品同等性能条件下, 鼓励优先采用再生产品。
- 2)建设项目范围内的地面道路和停车场,鼓励优先采用再生产品。
- 3)建设项目的基础垫层、围墙、管井、管沟、挡土坡及市政道路的路基垫层等部位,可采用再生产品。
 - 4) 政府投资的建设项目鼓励优先采用再生产品。
 - 2) 再生材料的使用和管理, 应符合下列规定:
 - 1) 不同类别、不同粒径的再生材料应分开运输和堆放。
 - 2) 再生材料和天然材料应分开堆放。
 - 3) 再生材料的生产原料及使用情况等信息应加以规范记录。

- 2) 再生制品应具有清晰的产品标识。
 - (2) 再生材料应用要求
- 1)被污染或腐蚀的建筑垃圾不得用于制备再生材料,再生材料的放射性应符合现行国家标准《建筑材料放射性核素限量》GB65660的规定。
- 2) 用于生产混凝土的再生粗骨料, 其颗粒级配、性能指标应符合现行国家标准《混凝土用再生粗骨料》GB/T25177的规定。
- 3) 用于生产混凝土和砂浆的再生细骨料, 其颗粒级配、性能指标应符合现行国家标准《混凝土和砂浆用再生细骨料》GB/T25176的规定。
- 4) 用于生产沥青混合料和道路用无机混合料的再生骨料,其颗粒级配、性能指标应符合国家现行标准《再生沥青混凝土》GB/T25033、《道路用建筑垃圾再生骨料无机混合料》JC/T2281的规定。
- 5) 用作混凝土掺合料的活性再生粉料,其性能指标应符合现行行业标准《废混凝土再生技术规范》SB/T11177的规定。
- 6) 再生骨料可用于生产预拌混凝土、砂浆、砌块、砖、混凝土 预制构件等,并应符合现行行业标准《再生骨料应用技术规程》 JGJ/T240 的要求。
- ⑦再生骨料用作混凝土梁、板、柱、剪力墙、楼梯的原材料时, 其性能指标应符合国家现行标准《混凝土结构设计规范》GB50010、 《混凝土结构耐久性设计规范》GB/T50476 和《普通混凝土配合比设 计规程》JGJ55、《再生骨料混凝土耐久性控制技术规程》CECS385 等的规定。
- ⑧再生骨料用作城市透水路面、停车场等透水混凝土的原材料 时,其性能指标应符合现行行业标准《再生骨料透水混凝土应用技术

规程》CJJ/T253的规定。

- (3) 再生制品应用要求
- 1) 再生骨料混凝土应用于工程结构时, 应满足国家现行标准《工程施工废弃物再生利用技术规范》GB/T50743、《再生骨料应用技术规程》JGJ/T240 的相关规定。
- 2) 再生混合料应用于城镇道路时,应满足现行行业标准《城镇道路沥青路面再生利用技术规程》CJJT43、《城镇道路工程施工与质量验收规范》CJJ1的规定。
- 3) 非烧结再生制品,包括混凝土实心砖、混凝土多孔砖、混凝土空心砖、普通混凝土小型空心砌块、透水路面砖和透水路面板等, 其工程应用应符合下列规定:

用于园林景观道路、非重载道路或广场时,其产品性能应分别符合国家现行标准《混凝土实心砖》GB/T21144、《承重混凝土多孔砖》GB25779、《非承重混凝土空心砖》GB/T24492、《普通混凝土小型砌块》GB/T8239、《透水路面砖和透水路面板》GB/T25993等的规定。

非烧结再生制品用于墙体时,其产品性能还应符合国家现行标准《混凝土小型空心砌块建筑技术规程》JGJT14、《混凝土砖建筑技术规程》DB33/1014的规定。

- 4) 烧结再生砖和砌块可用于非承重墙体,其产品性能应符合现行国家标准《烧结多孔砖和多孔砌块》GB13544、《烧结空心砖和空心砌块》GB/T13545的规定。
- 5) 再生陶粒和陶砂可用于园林绿化。用于填充墙和建筑墙体、楼(屋)面隔热保温层的原材料时,其质量及性能应符合现行国家标准《轻集料及其试验方法》GB/T17431的规定。
 - 6) 再生园林种植土可用于通用种植土和草坪土, 其质量应符合

现行行业标准《绿化种植土壤》CJ/T340的规定。

三、建筑垃圾产业化运营与管理

1、建筑垃圾产业化运营方法

(1) 市场化运作

建筑垃圾源化利用厂的建设需要大量资金,如果仅靠政府资金来建设的话,由于政府的自身财政有限,投资规模难以满足目前的建筑垃圾处理需求;与此同时,建筑垃圾处理公司由于其自身的管理问题和运行体系问题,使得公司的运营成本较高。因此,要促进舒城县建筑垃圾处理产业的发展,必然要引入多方的资源和多种管理发展模式,但由于建筑垃圾处理行业具有特殊的行业性质,必须考虑其自身具有的垄断性、有限竞争性和公益性的特点。综合以上因素,需要对舒城县建筑垃圾源化利用厂采用特许经营方式,这种经营方式具有如下优点:

1) 减轻政府财政的负担

建筑垃圾处理公司的通过特许经营,引入民间资本个人资本和外国资本进入该领域,在不同资本共存的条件下促进其经营方式的改变,改变建筑垃圾处理目前的弊端,改善目前的经营体制。政府可以通过建筑垃圾处理特许经营的方式减轻自身的财政负担和压力,另外通过这种方式还可以促进整个建筑处理行业的发展,使得国有资产在整个产业发展中,有更多的机会和实力投入到更加紧迫的相关技术领域。

2) 引进先进的建设技术和管理经验

政府对建筑垃圾源化利用厂项目实行公开招标,通过公开招标,能从同行业中筛选出管理经验以及运营机制良好的企业,有利于建筑垃圾处理先进技术与管理水平的引进,同时通过公开招标,也可以使具有市场竞争力的一些国外企业前来投标,项目通过特许经营的方式

引进国外比较先进的经验,利用本土行业整体发展。

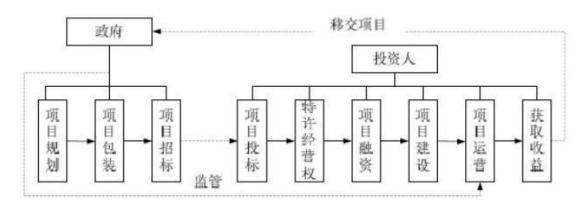
3) 提高建筑垃圾处理运营效率

政府通过转让建筑垃圾经营权的方式进行招标,投标公司为了在 特许经营期间收回成本并获取回报,必须凭借其先进技术和管理水平 保证建筑垃圾源化利用厂正常运行。建筑垃圾源化利用厂特许经营者 通过与政府签订特许经营合同,为了在合同期内追求利润的最大化, 必将从成本、效率以及管理方法上不断优化,在保证工程质量的前提 下,尽可能的缩减成本开支,尽量争取工程提前竣工,使建筑垃圾源 化利用厂尽早投入运营。

4) 促进建筑垃圾处理的良性发展

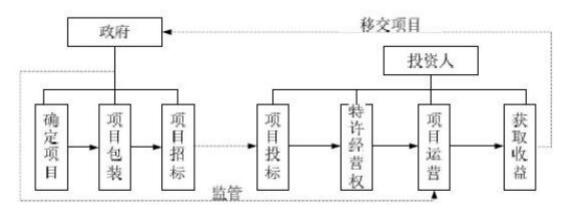
在政府的授权下,建筑垃圾源化利用厂特许经营者获得建筑垃圾 处理项目的经营与管理权,为了追求利益的最大化,必将不断的提高 管理水平与管理经验,借鉴国内外在该领域比较成熟的运营模式与方 法,提高了建筑垃圾处理项目的盈利能力,实现该产业的良性发展。

2、建筑垃圾处理设施建设模式


(1) BOT 模式

BOT模式简单意义上来讲,就是私人投资者在政府的授权下对公共基础设施项目进行投资建造,项目建成后自主运营受益,合同期满后再移交政府的一种资源合理利用的新模式,建筑垃圾源化利用厂的投资建设同样可以利用这种模式,BOT的运作过程见图,BOT模式下的建筑垃圾源化利用厂的建设,其实质也是在充分利用资源的基础上,使得建筑垃圾源化利用厂的建设与经营市场化。建筑垃圾源化利用厂使用BOT运营模式,符合我国目前所处的阶段与国情:

(1) 从我国财政开支上来讲,通过 BOT 模式的运营管理,有利于把社会上闲散资金与国外可利用的资金吸纳进来,进而可以减轻政


府的财政负担;

- (2) 对于政府来讲,社会闲散资金以及部分国外资金注入可以 降低政府的风险,同时也有利于项目资金的控制与管理;
- (3)通过政府行为的市场化,可以刺激相应建筑垃圾源化利用厂经营者在保证质量的前提下改善管理理念与方法,缩短工期,最终使广大民众受益。

(2) TOT 模式

TOT模式是如今比较常见的特许经营方式,建筑垃圾源化利用厂采用 TOT 运营模式比较常见。政府先建造建筑垃圾源化利用厂然后政府再将建造好的建造垃圾处理厂以 TOT 的模式承包给投资者运营管理一定的时间,投资人通过承接政府已建好的垃圾处理厂取得受益,收回投资,到合同期满后,投资者再将建筑垃圾源化利用厂移交给政府。TOT 运营模式见图:

(3) PPP 模式

PPP是指公共部门通过与私人部门建立伙伴关系来提供公共产品或服务的一种方式。PPP存在的基础是合同、特许权协议和经营权的归属。PPP模式下主要的项目参与方有:政府公共部门,私人投资者,特许经营公司(SpecialPurposeCompany,简称SPC),金融机构等。PPP模式的思路:政府部门或地方政府通过政府采购形式与中标单位组成的SPC签订特许合同,由SPC负责筹资建设和经营。政府通常与提供贷款的金融机构达成~个直接协议,来确保SPC能比较顺利地获得金融机构的贷款。特许权期满以后SPC将项目移交给政府。PPP运作思路如图所示。

建筑垃圾处理产业化发展可以利用 PPP 模式进行建设和运营。即政府将建筑垃圾处理设施建设的特许经营权授予承包商,承包商在特许权期内负责项目设计、融资、建设和运营,并通过经营再生产品、收取处理费,回收成本、偿还债务、赚取合理利润,特许期结束后将项目所有权无偿移交政府或相关部门。PPP 模式可以有效解决政府财政资金短缺的问题,同时由于私人企业介入较早,能够借助承包人先进技术和管理经验等优势,确保项目能够高效的运作,有效地控制预算成本、节约开支,高效地利用社会资源。

第九章 环境保护与安全卫生

一、环境保护总体要求

1、建筑垃圾环境污染现状

由于建筑垃圾的产生量较工程渣土产生量小很多,对环境造成的污染破坏主要体现在运输、处置阶段和封场阶段。

中国许多城市都可以看到这样的情景:一辆辆满载建筑垃圾的大型载重车从施工场地呼啸而出,卷起阵阵扬尘。并且大多数的车辆没有经过任何冲洗,也不安装挡泥盖,运载的弃土高过车身挡板,极易将垃圾洒落在运输路线上。最终造成空气污染和破坏清洁卫生。

处置阶段主要存在大气污染、噪音污染、水体污染、土壤污染和 引发地质灾害五类破坏环境的现象。

大气污染:主要是除尘措施或设备不到位造成的扬尘污染和处置 场消纳、焚烧建筑垃圾产生的恶臭污染物、锅炉大气污染对大气质量 的破坏。

噪音污染:主要是各种装卸、推产、压实等机械设备所产生的噪声和车辆行驶时产生的噪声污染。

水体污染:由于建筑垃圾的非法倾倒、堆放,造成地表和地下水的污染;同时在处置场填埋建筑垃圾也因为在渗滤液对场地周边地表水和地下水的污染。

土壤污染:建筑垃圾中含有如经防腐处理的废旧木材、含有汞的 日光灯管、铜铁铝重金属、塑料制品等,它们直接进入土壤,会对土 壤环境和农作物生长构成严重威胁,其中汞等重金属进入土壤和地下 水源后,会对人体健康造成严重危害。另外建筑垃圾中含有大量不可 降解的塑料袋和塑料餐盒被埋入地下,百年之后也难以降解。

在场地填满处置达到设计容量后,就应及时进行关闭和封场处理。虽然经过运营期间环保的监控处置,但如果封场后不经过再次有

效的环境治理,还是会对填埋区及其周边生态产生无法弥补的破坏。 导致填埋区及其周边土壤、水洗、空气等均遭到污染而无法生产利用。

2、环境保护原则

- (1) 遵循可持续发展、环境与发展宏观综合决策原则,合理利用建筑垃圾资源,切实预防和控制建筑垃圾在运输和处置过程中造成的污染,为城镇创造良好的生态环境。
- (2)坚持"减量化"原则,即在建筑垃圾形成之前,就通过科学管理和有效的控制措施将其减量。严格控制各施工单位建筑垃圾的产生、运输和排放,使各环境功能区质量全面达到国家及地方各项环境质量标准。
- (3) 坚持"资源化"原则,综合治理,化害为利,变废为宝; 坚持建设"三同步",达到效益"三统一",鼓励建筑垃圾综合利用, 鼓励建设单位、施工单位优先采用建筑垃圾综合利用产品。
- (4) 坚持"谁产出谁处置,谁污染谁负责"和"守法者奖,污染者罚"的原则,强化政府监管职能,加强科学防控。
- (5)坚持"科学选址,安全建设"原则。处置场地内及周边需进行详细的地质调查,禁止在发现断裂构造通过、滑坡、泥石流、边坡垮塌、地层裂缝下陷等不良地质的区域设置建筑垃圾处置场。应选在满足承载力要求的地基上,以避免地基下沉的影响,特别是不均匀或局部下沉的影响。建筑垃圾处置设施选址不应设在珍贵动植物保护区和国家、省级自然保护区;文物古迹区,考古学、历史学、生物学研究考察区。禁止选在江河、湖泊、水库最高水位线以下的滩地和洪泛区。应选在工业区和居民集中区主导风向下风侧,场界距居民集中区500m以外;
 - (6) 坚持"海绵城市"原则。舒城县正积极建设海绵城市,无

论是对用地的开发,建筑垃圾消纳场的选址、使用和后期的维护阶段,都应符合海绵城市的建设要求,可实现自然积存、自然渗透、自然净化,按照消纳场所处的地形地貌,合理的规划消纳场容量,不可以破坏周边自然环境。

- (7) 严格建筑垃圾处置核准制度,处置建筑垃圾的单位,应当向城市人民政府市容环境卫生主管部门提出申请,获得城市建筑垃圾处置核准后,方可处置。
- (8)建筑垃圾应按不同的产生源、种类、性质进行分别堆放、分流收运,分别处理。建筑垃圾收运、处置全过程严禁混入工业垃圾、生活垃圾和有毒有害垃圾。不得擅自设立处置场、消纳场收纳建筑垃圾。

3、环境保护总控制目标

- (1)建筑垃圾资源化利用和填埋处置工程应有雨、污分流设施, 防止污染周边环境。
- (2)建筑垃圾资源化处理工程应通过洒水降尘、封闭设备、局部抽吸等措施控制粉尘污染,并应符合下列规定:
- 1)雾化洒水降尘措施洒水强度和频率根据温度、面积、建筑垃圾物料性质、风速等条件设置。
- 2)局部抽吸换气次数不宜低于 6 次/h,含尘气体经过除尘装置处理后,排放应按现行国家标准《大气污染物综合排放标准》 GB16297-1996 规定执行。
 - (3) 建筑垃圾处理全过程噪声控制应符合下列规定:
- 1)建筑垃圾收集、运输、处理系统应选取低噪声运输车辆,车辆在车厢开启、关闭、卸料时产生的噪声不应超过82dB(A);
 - 2) 宜通过建立缓冲带、设置噪声屏障或封闭车间控制处理工程

噪声;

- 3)资源化处理车间,宜采取隔声罩、隔声间或者在车间建筑内墙附加吸声材料等方式降低噪声;
- 4)场(厂)界噪声应符合现行国家标准《工业企业厂界环境噪声排放标准》GB12348-2008的规定。
- (4) 建筑垃圾处理工程的环境影响评价及环境污染防治应符合 下列规定:
- 1) 在进行可行性研究的同时,应对建设项目的环境影响作出评价;
- 2) 建设项目的环境污染防治设施,应与主体工程同时设计、同时施工、同时投产使用;
- 3)建筑垃圾处理作业过程中产生的各种污染物的防治与排放, 应贯彻执行国家现行的环境保护法规和有关标准的规定。
- (5)建筑垃圾填埋库区应设置地下水本底监测井、污染扩散监测井、污染监测井。填埋场应进行水、气、土壤及噪声的本底监测和作业监测,填埋库区封场后应进行跟踪监测直至填埋体稳定。监测井和采样点的布设、监测项目、频率及分析方法应按现行国家相关标准执行。

二、大气环境保护措施规划

目前舒城县建筑垃圾在的产生、运输、处置三个阶段均会产生大量的扬尘,对区域内的大气环境造成不同程度的污染。对大气环境保护主要采取以下防治措施:

- (1) 在建筑施工场地进行"三通一平"、开挖、回填土方前必须到相关部门办理工程弃土报建手续,实施时应严格执行。
- (2) 建筑工地实行封闭管理,并应采用硬质围挡。围挡设置要达到安全、稳固、美观要求,城市主干道围挡应设置不低于2.5米,

次要道路或其它区域应不低于 1.8 米。施工现场道路、加工区和生活区地面应进行硬化。建成区内新开工工程出入口必须使用可移动装配、周转使用的冲洗平台及清洗池,冲洗平台应设置于工地大门内侧车辆行进路线上,长度不小于 8 米,宽度不小于 3.5 米,其周边设置排水沟,排水沟与沉淀池相连,并按规定处置泥浆和废水排放。车辆进出必须通过冲洗平台及清洗池,保持出场车辆清洁,不得带泥污染市政道路。

- (3)工程泥浆陆上运输应采用密闭罐车,水上运输应采用密闭分隔仓。其他建筑垃圾陆上运输宜采用密闭厢式货车,水上运输宜采用集装箱。建筑垃圾散装运输车或船表面应有效遮盖,建筑垃圾不得裸露和散落。
- (4)建筑垃圾运输车厢盖和集装箱盖宜采用机械密闭装置,开启、关闭动作应平稳灵活,车厢与集装箱底部宜采取防渗措施。
- (5)建筑垃圾运输工具应容貌整洁、标志齐全,车厢、集装箱、车辆底盘、车轮、船舶无大块泥沙等附着物。
- (6)建筑垃圾装载高度最高点应低于车厢栏板高度 0.15m 以上, 车辆装载完毕后,厢盖应关闭到位,装载量不得超过车辆额定载重量。
- (7)转运调配场堆放区可采取室内或露天方式,并应采取有效的防尘、降噪措施。露天堆放的建筑垃圾应及时遮盖。转运调配场可根据后端处理处置设施的要求,配备相应的预处理设施,预处理设施宜设置在封闭车间内,并应采取有效的防尘措施。
 - (8) 建筑垃圾资源化利用厂应符合下列要求:
- 1) 厂区中的建筑垃圾原料贮存堆场应保证堆体的安全稳定性, 并应采取防尘措施,可根据后续工艺进行预湿;建筑垃圾卸料、上料 及处理过程中易产生扬尘的环节应采取抑尘、降尘及除尘措施。

- 2) 有条件的企业官采用湿法工艺防尘。
- 3) 易产生扬尘的重点工序应采用高效抑尘收尘设施,物料落地 处应采取有效抑尘措施。
- 4) 应加强排风,风垦、吸尘罩及空气管路系统的设计应遵循低阻、大流量的原则。
- 5)车间内应设计集中除尘设施,可采用布袋式除尘加静电除尘组合方式,除尘能力应与粉尘产生量相适应。
- (9)资源化处理工程应通过洒水降尘、封闭设备、局部抽吸等措施控制粉尘污染,并应符合下列规定:
- 1)雾化洒水降尘措施洒水强度和频率根据温度、面积、建筑垃圾物料性质、风速等条件设置。
- 2)局部抽吸换气次数不宜低于 6次/h,含尘气体经过除尘装置处理后,排放应按现行国家标准《大气污染物综合排放标准》 GB16297-1996规定执打。
 - (10) 建筑垃圾填埋场、消纳场应符合下列要求:
- 1) 在堆填现场主要出人口宜设置洗车台,外出车辆宜冲洗干净后进人市政道路。
 - 2) 作业场所应采取抑尘措施。
 - (11) 对施工工地、建筑垃圾运输过程中扬尘污染控制管理:
- 1) 控制管理目标:随时保持施工现场、道路及周边环境干净、整洁,无扬尘污染。
 - 2) 控制管理责任方: 施工、运输企业或个人。
 - 3) 控制管理要点:
 - 1) 控制管理责任方需及时划拨使用专款,落实控制扬尘的经费。
 - 2) 按规范要求, 施工现场产生的垃圾及时清运, 材料堆放整齐。

- 3) 土方进出工地时,在洗车池将车辆的车帮和车轮冲洗干净, 并做好遮蔽、清洁工作。
- 4) 施工现场内堆放的水泥、灰土、砂石等易产生尘埃的物料, 采取围栏、遮盖等措施防尘。
- 5) 工地上木工机械等易产生粉尘的设备安置在相对封闭的操作棚内,产生的木屑、废料等及时清理。
 - 6) 工地在清扫时,适当洒水或采取其它防尘、吸尘等措施。
 - 4) 控制措施:
- 1) 由控制责任方落实控制扬尘的经费,保证扬尘控制经费专款专用。
 - 2) 建立扬尘控制责任制及制度,并做好分阶段作业扬尘控制。
- 3) 控制责任方指定安全文明施工负责人负责施工现场扬尘的管理工作,并建立扬尘控制档案,工作总结、实施方案、会议记录、宣传资料等。
- 4) 对参加本工程施工作业的所有人员进行保护环境、控制扬尘知识及重要性等有关方面的教育和宣传。扬尘控制措施和承诺的内容在工地四周醒目处进行公示。

对控制扬尘工作的职责进行分解落实,使本工地的扬尘控制制度做到层层落实,控制到位。

- 5)施工场地已经进行了地面的硬化处理,因施工需要没有硬化的地方用绿网覆盖或其它措施,使泥土不裸露。临街及临居民小区作业面用绿色密目安全网进行全封闭处理。
- 6)施工现场内堆放的水泥等易产生尘埃的物料进行封闭式管理, 不允许露体堆放,灰土、砂石进行可靠围挡,并用绿色密目网随时进 行覆盖。

- ⑦建筑垃圾、工程渣土在 24 小时内不能清运出场的,设置临时堆场,堆场周围进行围挡、遮盖、等防尘措施。散装物料、建筑垃圾在 6m³以上采取密闭清运,施工场地清扫出的建筑垃圾、工程渣土采用袋装或密闭清运。
- ⑧运输车辆驶离工地前,必须将车辆的槽帮和车轮用高压水枪设备冲洗干净,并采取围挡、遮盖等防尘措施。严禁使用压缩空气清理车辆和地面上的泥土。
- ⑨当清理建筑垃圾或废料时,采用洒水并有吸尘措施,不能采用翻竹底笆、板铲拍打、空压机吹尘等会产生扬尘的方法清理。
- ⑩工程完工30日内,平整工地场地和周围场地,清除积土、堆物并对裸露地面进行临时绿化或用绿网覆盖。

三、噪声环境保护措施规划

- (1) 严格控制施工工地在夜间进行产生环境噪声污染的建设施工。因生产工艺要求或者特殊需要必须连续作业,确需进行夜间施工的,必须到建设、环保部门办理《夜间施工许可证》,并在工地进出口悬挂,公告附近居民,与附近社区、居委会、物业小区居民进行沟通,求得市民的理解和支持。
- (2) 城管、环保等部门将按照建筑施工不同阶段,及时监测检查建筑施工现场场界环境噪声,督促落实防治措施,对未办理《夜间施工许可证》或未按照《夜间施工许可证》规定的时间进行施工,产生噪声污染的,将责令停工,给予警告,可并处一定数额的罚款。
- (3)建筑垃圾收集、运输、处理系统应选取低噪声运输车辆, 车辆在车厢开肩、关闭、卸料时产生的噪声不应超过82dB(A)。
- (4) 宜通过建立缓冲带、设置噪声屏障或封闭车间控制转运凋配场、填埋场和资源化处理厂噪声。
 - (5) 噪声大的建筑垃圾资源化处理车间, 宜采取隔声罩、隔声

间或者在车问建筑内墙附加吸声材料等方式降低噪声。

- (6)建议各施工、运输单位选购低噪声的先进设备,加强对高噪声设备的管理和维护,并做好处置场区绿化工作。同时,运输中车辆应控制车速,减少鸣笛次数。
- (7) 造成噪声污染后,经执法部门责令停工而拒不停工的建设单位,执法部门发送《执法建议函》,同时将视情节作出吊销《施工许可证》、降低企业资质等级等处罚,并依法对相关责任人作出处罚。

四、水环境保护措施规划

- (1) 建筑垃圾处置场、填埋场、消纳场选址不应设在地下水集中供水水源地及补给区; 洪泛区和泄洪道。
- (2)为避免产生大的环境事故,建筑垃圾处置场、填埋场、消纳场应该避开以下区域:淤泥区、密集居住区,距公共场所或人畜供水点 500米内、距飞机场 10公里以内的地区,直接与航道相通的地区,地下水水位与场底垂直距离在 1.0米以内的地区。
- (3)由于建筑垃圾处置场、填埋场、消纳场单位面积上的垃圾和覆土数量很大,对地基荷载的要求应大于15千帕/m²,否则填满垃圾后由于重力作用造成沉陷、塌方而破坏防渗衬层,造成垃圾渗滤液渗漏污染地下水。
 - (4) 场址最好是独立的水文地质单元,以减少人工防渗投资。
- (5)建筑垃圾填埋场、消纳场地应建设渗滤液导排系统,确保填埋场、消纳场运行期间防渗衬层以上的渗滤液深度不大于 30 厘米。
- (6)建筑垃圾处置场地应设置渗滤液处理设施,以在管理期内 对渗滤液进行处理达标后部分用回喷泵进行回灌,部分排放。
- (7)建筑垃圾中转调配、填埋消纳场、处置场所应有雨、污分流设施,防止污染周边环境。
 - (8) 建筑垃圾治理建设项目既要防止渗滤液污染地下水, 又要

防止地下水侵入、浸泡垃圾体而增加污水量,采取有效措施对其做防渗处理,防治污水渗漏对地下水质造成严重污染影响;保护项目拟建场址附近地下水质量满足《地下水质量标准(GB/T14848-2017)》中的标准要求。建筑垃圾治理建设项目选址不应设在地下水集中供水水源地及补给区内,如选址地临近地下水集中供水水源地及补给区,场址附近地下水质量满足《地下水质量标准(GB/T14848-2017)》中的IV标准要求。

- (9) 严格控制垃圾渗滤液的产生量,对建筑垃圾治理建设项目排放的渗滤液进行处理后达标排放,保证垃圾渗滤液的排放不致使受纳水体的使用功能遭受影响;处理后的渗滤液水质应达到《污水综合排放标准》的标准才可排放,且不得直接排入二级以上生活饮用水地表水源保护区水域中。
- (10) 加强水质监测。对建筑垃圾建设项目产生的滤液进行进行 检测,监测包括透明度、溶解氧(DO)、氨氮(NH3-N)、氧化还原 电位(ORP)等 4 项指标;配合完成黑臭水体水质交叉监测工作。
- (11)建筑垃圾填埋、消纳区应设置地下水本底监测井、污染扩散监测井、污染监测井,应进行水、气、土壤及噪声的本底监测和作业监测,场区封场后应进行跟踪监测直至填埋体稳定。监测井和采样点的布设、监测项目、频率及分析方法应按现行国家相关标准执行。

五、土壤环境保护措施规划

- (1)应当编制土壤污染风险评估报告。主要包括下列内容:主要污染物状况;土壤及地下水污染范围;风险管控、修复的目标和基本要求等。
- (2)针对建筑垃圾对土壤带来的污染种类,应做好源头控制, 实行垃圾分类回收,回收可再利用的资源,积极做好渗滤液导排系统 和渗滤液处理设施,严格避免渗滤液流出防渗衬层之类的污染事故发

- 生,做好填埋、消纳区植被覆盖,减轻污染。
- (3)建筑垃圾治理建设项目各类涉及土地利用的规划和可能造成土壤污染的建设项目,应当依法进行环境影响评价。环境影响评价文件应当包括对土壤可能造成的不良影响及应当采取的相应预防措施等内容。
- (4)建立土壤污染隐患排查制度,保证持续有效防止有毒有害物质渗漏、流失、扬散;进行土壤污染状况监测和定期评估,制定、实施自行监测方案,并将监测数据报生态环境主管部门。
- (5) 严格控制有毒有害物质排放,土壤污染重点监管站(点) 应当对监测数据的真实性和准确性负责,发现土壤污染重点监管单位 监测数据异常,应当及时进行调查。并按年度向生态环境主管部门报 告排放情况。
- (6) 建筑垃圾产生源头,如拆除设施、设备或者建筑物、构筑物的区域,应当采取相应的土壤污染防治措施。
- (7) 发生突发事件可能造成土壤污染的,地方人民政府及其有 关部门和相关企业事业单位以及其他生产经营者应当立即采取应急 措施,防止土壤污染,并依照法律法规做好土壤污染状况监测、调查 和土壤污染风险评估、风险管控、修复等工作。
- (8)禁止向农用地排放重金属或者其他有毒有害物质含量超标的污水、污泥,以及可能造成土壤污染的建筑垃圾等。
- (9)对不符合法律法规和相关标准要求的,应当根据监测结果,要求污水集中处理设施、固体废物处置设施运营单位采取相应改进措施。
- (10) 风险管控效果评估、修复效果评估活动,应当编制效果评估报告。效果评估报告应当主要包括是否达到土壤污染风险评估报告

确定的风险管控、修复目标等内容。风险管控、修复活动完成后,需要实施后期管理的,土壤污染责任人应当按照要求实施后期管理。

- (11) 实施风险管控、修复活动,应当因地制宜、科学合理,提高针对性和有效性。实施风险管控、修复活动,不得对土壤和周边环境造成新的污染;风险管控、修复活动中产生的废水、废气和固体废物,应当按照规定进行处理、处置,并达到相关环境保护标准。
- (12) 修复施工单位转运污染土壤的,应当制定转运计划,将运输时间、方式、线路和污染土壤数量、去向、最终处置措施等,提前报所在地和接收地生态环境主管部门。
- (13) 未达到土壤污染风险评估报告确定的风险管控、修复目标的建设用地地块,禁止开工建设任何与风险管控、修复无关的项目。
- (14) 建筑垃圾治理建设项目用地用途变更为住宅、公共管理与公共服务用地的,变更前应当按照规定进行土壤污染状况调查。
 - (15)建筑垃圾治理项目用地和周边环境用地土壤保护还应满足 《中华人民共和国土壤污染防治法》和其他法律法规的相关规定。

六、地质灾害防治措施规划

- (1) 建筑资源化利用和填埋处置工程选址的工程地质与水文地 质条件应满足设施建设和运行的要求,不应选在发震断层、滑坡、泥 石流、沼泽、流沙及采矿陷落区等地区。
- (2)加强建筑垃圾排放监管工作,对因职能部门监管不到位,致使因建筑垃圾造成地质灾害事故发生的,要追究部门负责人的责任。
- (3) 应重点加强对建筑垃圾处置场、消纳场水土保持措施的监督管理,要坚持"以防为主,防治结合"方针,努力防控灾害造成的损失。
 - (4) 落实好《地质灾害防治条例》,认真将《地质灾害防治条

例》贯穿于建筑垃圾处置场、消纳场的选址、建设和运营工作的始终。

- (5)建筑垃圾处置区、消纳区应根据规划限高、地基承载力、 车辆作业要求等因素,合理确定分层厚度、堆高高度、边坡坡度.并 应进行整体稳定性核算。
- (6) 建筑垃圾消纳场雨期作业时,应采取措施防止地面水流人 回填点内部,并应避免边坡塌方。

七、生态恢复规划

建筑垃圾消纳场封场后,虽然没有新垃圾补充进入,但是封场覆盖层下面的垃圾在相当长一段时间内依然进行着各种生化反应,场地仍然会产生不同程度的沉降,垃圾渗滤液及填埋气会继续产生。如封场后不加以适当的生态恢复,将形成了以生物多样性低、功能下降为特征的各式各样的退化生态系统,成为一个个难以痊愈的伤口,影响景观,破坏生态。在发达国家,关于建筑垃圾消纳场封场用地治理及恢复的法律体系正在逐渐形成,但是在发展中国家,对建筑垃圾消纳场封场用地的治理和恢复还没有得到重视。

1、生态恢复的意义

对建筑垃圾消纳场封场用地进行生态恢复是废弃物安全处理方法的一部分,是生态城市物质循环的一个组成部分,也是生态工业的一个组成分子,对其进行生态恢复是可持续发展原理的应用。建筑垃圾消纳场封场用地进行生态恢复之后,一方面削减了原有对生态环境的压力,另一方面使土地的利用价值得到恢复,在恢复过的土地上进行生态系统的恢复更可以改善当地的自然环境,为自然生态系统恢复活力创迪良好的基础条件。伴随着我国城市化、工业化进程的不断加快,建筑垃圾的产生和排放也在高速增长,由于技术的推广和产于模式的限制,近期我国的建筑垃圾还不能做到完全资源化回收利用,建筑垃圾处置消纳仍然是建筑垃圾处理中的一个重要途径。建筑垃圾消

纳场封场地的生态恢复符合生态资循环环再利用的准则,具有很大的社会、经济、生态效益。

(1) 建筑垃圾封场生态恢复的社会效益

建筑垃圾封场生态恢复有很大的社会效益,一方面建筑垃圾封场的生态恢复可以美化社会环境,避免对周边环境和居民带来影响和种种隐患。另一方而,建筑垃圾封场的生态恢复也可以节约土地资源,用地资源紧张,是节约建设用地和耕地的一种基本方法。建筑垃圾封场的生态恢复减少了土地的破坏和不良利用,且可以减少因土地占用而产生的移民,而建筑垃圾封场恢复后的管理还能够产生一定的劳动力需求,对社会的安定团结也起到了一定的作用。

(2) 建筑垃圾封场生态恢复的经济效益

建筑垃圾消纳场封场的生态恢复顺应了发展循坏经济的社会需求,可以促进工业产业链的重新组合。并为生态恢复单位带来可观的经济收益。一方面,建筑垃圾封场的生态恢复使土地生产力得以恢复,生态环境得以改善。另一方面,建筑垃圾封场的生态恢复也对以减少征用土地的费用,降低企业生产成本和经济负担。

(3) 建筑垃圾封场生态恢复的生态效益:

对建筑垃圾封场进行生态恢复,可以带来巨大的生态效益。建筑垃圾封场的生态恢复可以使被破坏的土地生态系统得到改善,促进整个自然生态系统的融洽与协调,并保持系统间的良性循环与平衡发展。建筑垃圾封场的生态恢复可以削减污染,减轻污染带来的环境负面影响,改善当地的生态坏境。建筑垃圾封场的生态恢复可以恢复植被和土壤,保证一定的植被覆盖率和土壤肥力,增加种类组成和生物多样性,实现生物群落的恢复,提高生态系统的生产力和自我维持能力。当生态系统被恢复之后,其带来的生态效益诸如扩大绿化面积、

美化环境、调节气候、减少水土流失等是难以估量的。

2、生态恢复的原则

进行建筑垃圾消纳场封场后的生态恢复要依照以下的原则进行。

- (1) 自然原则。建筑垃圾消纳场封场用地的生态恢复受到自然环境的巨大影响,对建筑垃圾消纳场封场用地进行生态恢复必须首先考虑当地的各种自然特征、环境因素,因地制宜地进行。
- (2) 系统原则。建筑垃圾封场后的生态恢复是进行一个生态系统的恢复,必须遵循生态系统的规律,按照生态系统的原则和方法来建立。即建立合理的内容组成(种类丰富度及多度)、结构(植被和土壤的垂直结构)、格局(生态系统成分的水平安排)、异质性(各组分由多个变量组成)、功能(诸如水、能量、物质流动等基本生态过程的表现)。
- (3) 无害化原则。对建筑垃圾封场后的生态恢复要首先考虑生态的手段,尽量使用对其他生态系统无害的手段对建筑垃圾消纳场封场用地进行生态恢复。以其他生态系统的损失作为本地生态恢复的代价,不符合生态恢复的内涵。
- (4) 经济原则。对建筑垃圾封场后的生态恢复要实事求是,从 区域资源的适宜性出发,考察区域社会经济特征,确定生态恢复的内 容和重点,设计生态恢复方案,规划生态恢复项目,从地力,人力、 财力三方面量力而行。
- (5)管理和监督原则。对建筑垃圾封场后进行生态恢复之前,应该制定建筑垃圾消纳场封场用地生态恢复规划,在建筑垃圾封场进行生态恢复之后,应该对已经恢复的建筑垃圾消纳场进行有效地管理和监督,直到其生态系统功能和结构趋于完善为止。

3、封场后生态恢复技术措施

(1) 边坡整治

由于建筑垃圾消纳场的选址不同造成了周边环境和消纳场建造特点的不同,一些消纳场边坡高差较大,坡角较陡,坡面参差不平,很大程度上影响了山体的自然景观,并且可能存在地质灾害隐患。采取必要的措施进行边坡整治,排除安全隐患是建筑垃圾消纳场封场后生态恢复的基础。

对于稳定边坡只需清除坡面松动、不牢固的破碎岩石;对于存在地质灾害隐患的边坡,应根据地貌、地层岩性、结构、水文地质等条件选择削坡减载、坡角支墩、挡土墙、抗滑桩、金属锚杆、锚索、危岩体爆破、注浆加固、排水工程、主坡面顶部修建防护拦杆、坡底外设置隔离围栏等措施对边坡进行整治,以提高边坡的稳定性和可靠性,防止事故发生。边坡的生态恢复不但能起到绿化、美化的效果,还可提高边坡的稳定性,起到生态护坡的作用。边坡生态环境恢复技术选择的主要依据是边坡的坡度,可采取的生态恢复技术如下:

堆体整形顶面坡度不宜小于5%。边坡大于10%时宜采用多级台阶,台阶间边坡坡度不宜大于1:3,台阶宽度不宜小于2m。填埋场封场覆盖后,应及时采用植被逐步实施生态恢复,并应与周边环境相协调。

(2) 土壤保护与恢复

建筑垃圾消纳场土壤稀疏且物理、化学性状较差,难以直接满足植被恢复的需要,因此土壤保护与恢复是建筑垃圾消纳场封场用地生态恢复的重要内容。

建筑垃圾消纳场填埋物种类多样,很多填埋物难以蕴藏水分,造成土壤的大量流失,难以为植物生长提供必要的水分和养分,因此需要改造水系,减少土壤流失。其重点是在利用建筑垃圾消纳场周围原

有排水系统的基础上,进一步设计新的排水沟渠,将建筑垃圾消纳场的地表径流有序地归顺到附近的地表水系中。设计网状排水沟,雨水经排水沟汇集后排入就近的地表水系。建筑垃圾消纳场施工和营运中产生大量表土,其中含优势植物的种子、块根和块茎等繁殖体,可在生态恢复时尽量加以利用。建设过程中应制订表土挖掘、保存和利用计划。在地势较为平缓的山凹处设置专用的表土存放场,并覆盖塑料布,修挡土墙和排洪沟。使用一定时间或服务期满后,可利用这些土壤进行绿化,修复生态环境。

建筑垃圾消纳场表土的存储量一般不能满足生态恢复的需要,通常还需要大量引入客土。在引入客土时,不仅要注意有机质 N、P、K等营养成分的含量和配比,还要注意土壤的级配,以增强客土的抗冲刷能力。城市污泥的植物营养素含量丰富,粘性、持水性和保水性较强,且富含微生物,有利于物质能量的循环,可作为客土引入。这样既降低了运输成本,也减少取土对环境的破坏。

建筑垃圾消纳场中一些填埋含氯化物或碱活性骨料的区域具有较强的酸碱化学性质,需要利用化学方法改良土壤本底,以适合植物生长。可根据对土壤本底性质的测量和研究,适当选择酸化(添加炼铁残渣或有机质)、简化(添加碱石灰)、去除盐分(添加石膏)、去除毒物(EDTA配合)、营养物添加(合适的化肥、有机质)等一种或多种化学方法首先对土壤的理化性质进行改良恢复,方可进一步进行植被恢复。而填埋装修垃圾的区域由于有机物含量较高,性质接近生活垃圾,在其上进行制备恢复也将面临填埋气体、垃圾渗滤液、最终覆土层高文、干旱、贫瘠等诸多严峻的环境压力。土壤中填埋气体(CO2和CH4)的存在,可导致植物产生生长不良、高死亡率、植株矮化、生理失调等种种问题,是建筑垃圾消纳场植物生长的最主要

的限制因子。可以在封场时建立填埋场导排气系统,减少最终覆土层中填埋气体的量以利于生态恢复。另外,选择耐性植物也是一种实际可行的方法,实践证明浅根系的草本植物更能在填埋气体较多的地方生长。可以在种植草本植物 1~2 年以后再开始种植乔灌木,因为如果草本植物因填埋气体的大量释放而无法生长时,其他深根系的植物类群更加难以幸免。而建筑垃圾渗滤液的组成比生活垃圾的组成相对简单、浓度也低于生活垃圾渗滤液,而垃圾渗滤液对生态恢复的植物群落的毒害作用主要取决于使用建筑垃圾渗滤液的方式和浓度。一些研究表明,如果通过稀释或降低施用的频率,将垃圾渗滤液中的有害成分控制在很低的水平,则其完全可以作为恢复植被的用水来减少水分胁迫对植物生长的影响。

(3) 植被保护与恢复

建筑垃圾消纳场的建设导致的生态破坏严重,生态恢复不能只依靠原有植被,还需要引入人工植被。引入的人工植被应选择合适的植被种类,优化配置方式,重视栽培技术和栽后管理。

建筑垃圾消纳场封场后,土壤物理性状较差且缺肥、缺水,同时考虑到地形、气候、光照、边坡特点等因素,应尽量选择耐贫瘠、耐干旱、生命力强、根系发达、保土能力强、抗病虫害能力强的乡土植物,以减少后期维护工作。群落结构配置应以草灌植物为主,优化配置乔-灌-藤-草。在背阴面种植对光照要求不高的乡土植物;在边坡上可种植攀援植物和下垂植物;在阶台和缓坡进行乔-灌-藤-草混交,首先采取直播方式形成草灌群落,再种植以经济林为主的乔木,逐步营造乔灌群落:地表栽种多年生匍匐生长草类植物。

采用适当的植被栽培技术,加强栽后管理,逐渐建立起稳定的植物群落。伴随着群落的形成与演替,植物群落的物种多样性呈逐渐增

加的趋势, 形成近似自然的稳定的生态系统。

4、封场后生态恢复的评价与管理

在建筑垃圾消纳场封场进行了生态恢复之后,还应对生态恢复的结果进行评价。另外,还需对已经初步恢复的生态系统进行管理和监督,以使生态系统能够继续完善以达到自我恢复的功能。

(1) 生态恢复评价

建筑垃圾消纳场封场生态恢复评价是指在一定的用途条件下. 评 定被恢复土地质量的高低以及被恢复土地对定利用目的适宜性。建筑 垃圾消纳场封场生态恢复的评价一方面可以为生态恢复工程的验收 提供一定的依据,另一方面也可以为其他建筑垃圾消纳场封场生态恢 复规划提供基础资料。建筑垃圾消纳场的生态恢复评价可以分为自然 评价和经济评价两大类,其中自然评价又可以分成适宜度评价和质量 评价两种。适宜度评价是对被恢复地在一定的条件下对不同土地利用 方式的适宜程度进行评价:质量评价是对被恢复地的土质、坡度、土 壤状况、排灌条件等土地质等方面进行的评价; 经济评价是对被恢复 地在某一用途上可能取得的经济效益进行综合评定,经济评价主要依 据被恢复地上获得的效益与投入的人力、物力资源之间的对比关系, 以生态恢复净收益作为评价标准进行。进行建筑垃圾消纳场封场后的 生态恢复评价时,应该首先划分生态恢复地评价单元,然后选择评价 因索,确定评价因素指标体系并选定指标标准,然后利用一定的数学 方法评定本恢复地的生态恢复水平。目前用于实践的评价方法包括利 用复垦用地结构多样性指数和生物多样性指数进行评价:利用专家系 统的方法,对土地结构与植被的关系进行适宜度评价:利用最优控制 理论及分步建模原理建立决策支持系统对生态恢复的效果进行评价; 建立一体化模型对建筑垃圾消纳场生产与生态重建进行评价等。

此外,连续监测和科学的后续管理对于保证恢复效果的持久性也很重要。对建筑垃圾消纳场的生态修复本身就是一项系统工程,因此要加强对修复过程的管理。从生态恢复设计方案的选择,到建筑垃圾消纳场的封场覆盖材料的选择等都要进行全面系统的考虑。此外还要加强对消纳场内沼气和渗滤液的监测。采取切实有效的措施来减少其对植物生长的不良影响。加强管理还体现在要注意对修复植物进行及时养护。因为建筑垃圾消纳场本身是一个很脆弱的生态体系,如果不注意对修复植物进行及时养护就会造成植物的大面积死亡,尤其是要关注对修复植物的灌溉方案,确保植物对水分的需求。另外,恢复后的土地用于农业生产仍是一个需要特别关注的问题,为作物吸收的毒害物质可能会对人类的健康产生威胁。因此,有必要建立起风险评价来揭示可能进入食物链的毒害物质的总量及其途径。

(2) 生态恢复管理与利用

封场后的管理和利用应该符合下列要求:

- 1) 填埋场封场后应继续进行渗沥液导排和处理、填埋气体导排、 环境与安全监测等运行管理, 直至填埋体达到稳定。
 - 2) 填埋场封场后宜进行水土保持的相关维护工作。
- 3)填埋场封场后的土地利用前应做出场地稳定化鉴定、土地利用论证,并经环境卫生、岩土、环保等部门鉴定。

八、安全卫生规划

1、项目安全控制

各类建筑垃圾处置设施的项目安全控制应符合以下要求:

- (1) 对建筑垃圾处理工程项目设计方案均需要进行环境影响评价。
- (2)建筑垃圾处置设施选址应符合当地城市总体规划、土地利用总体规划、环境卫生专项规划、以及今后编制的国土空间规划和国

家现行有关标准的要求。建筑垃圾处置场、消纳场应选择具有自然低洼地势的山坳、采石场废坑等地点,并应满足交通方便、运距合理的要求。

- (3) 建筑垃圾处置场、消纳场选址不应设在下列地区:
- 1) 地下水集中供水水源地及补给区:
- 2) 洪泛区和洲洪道:
- 3)活动的坍塌地带、尚未开采的地下蕴矿区、灰岩坑及溶岩洞区。
- (4)生活垃圾、危险废物不得进入临时消纳场、建筑垃圾填埋场和建筑垃圾资源化利用厂。
- (5) 处置场的竣工,必须经原审批环境影响报告书(表)的环境保护行政主管部门验收合格后,方可投入生产或使用。
- (6)处置场的渗滤液水质达到《污水综合排放标准》GB8978-1996 标准后方可排放,大气污染物排放应满足《大气污染物综合排放标准》 GB16297-1996 无组织排放要求。
- (7) 处置场使用单位,应建立检查维护制度。定期检查维护堤、坝、挡土墙、导流渠等设施,发现有损坏可能或异常,应及时采取必要措施,以保障正常运行。
- (8) 处置场的使用单位,应建立档案制度。应将入场的一般工业固体废物的种类和数量以及。
 - (9) 下列资料,详细记录在案,长期保存,供随时查阅。
 - 1) 各种设施和设备的检查维护资料;
 - 2) 地基下沉、坍塌、滑坡等的观测和处置资料;
- 3) 渗滤液及其处理后的水污染物排放和大气污染物排放等的监测资料。

2、安全生产预防

各类建筑垃圾处置设施的安全生产预防控制应符合以下要求:

- (1) 填埋场作业过程的安全卫生管理应符合现行国家标准《生产过程安全卫生要求总则》GB/T12801的有关规定。
- (2) 从事建筑垃圾收集、运输、处理的单位应对作业人员进行 劳动安全卫生保护专业培训。
- (3)建筑垃圾处理工程应按规定配置作业机械、劳动工具与职业病防护用品。
- (4) 应在建筑垃圾处理工程现场设置劳动防护用品贮存室,定期进行盘库和补充;应定期对使用过的劳动防护用品进行清洗和消毒;应及时更换有破损的劳动防护用品。
- (5) 建筑垃圾处理工程应设道路行车指示、安全标志及环境卫 生设施设置标志。
- (6)建筑垃圾收集、运输、处理系统的环境保护与安全卫生除满足以上规定外,尚应符合国家现行相关标准的规定。
- (7) 建筑垃圾堆放、堆填、填埋处置高度和边坡应符合安全稳定要求。
- (8)建筑垃圾处理工程现场的劳动卫生应按现行国家标准《工业企业设计卫生标准》GBZ1、《生产过程安全卫生要求总则》GB/T12801的有关规定执行,并应结合作业特点采取有利于职业病防治和保护作业人员健康的措施。

3、火灾防护

由于建筑垃圾处置场、消纳场大多远离市区,靠近山区或农村, 场内和周边植被生长良好,区内的建筑垃圾含有部分的易燃物质,沼 气浓度有可能局部较高,加之场区人员、车辆进出频繁,因此,预防 火灾工作非常重要。各类建筑垃圾处置设施的火灾防护应符合以下要求:

- (1)消防设施的设置应符合现行国家标准《建筑设计防火规范》 GB50016 和《建筑灭火器配置设计规范》GB50140 的有关规定。
- (2) 电气消防设计应符合现行国家标准《建筑设计防火规范》 GB50016 和《火灾自动报警系统设计规范》GB50116 中的有关规定
- (3) 有条件的建筑垃圾处置场、消纳场可在场界周围设置 10m 的防火带, 杜绝因场外的明火漫延至消纳场。
 - (4)按国家规定要求配置防火设施和器材,并保持随时能使用。
- (5) 对全场职工加强安全防火教育,做到人人懂安全、人人讲安全、人人会使用各种消防设施,并确保 24 小时通讯畅通。
- (6)制定场区防火工作应急预案,适时组织演练,做到紧急情况下能熟练处置。
- (7) 保持与当地公安及消防部门的联系, 杜绝消纳库区拾荒, 严禁携带火种进入消纳作业区。
- (8) 加强周边居民、村民的宣传教育,讲清防火工作的重要性和危害性,并做到与周边社区和村组织形成联动,确保一方有难,八方支援措施的落实。

4、水灾防护

因各类建筑垃圾处置设施根据地形而建,处置场、消纳场的雨水 随地形而流,因此,保证场区地表水排水设施通畅尤为重要。各类建 筑垃圾处置设施的水灾防护

应符合以下要求:

(1)各类建筑垃圾处置设施的选址应有可靠的防洪、排涝措施, 其防洪标准应符合现行国家标准《防洪标准》GB50201-2014的有关 规定。

- (2) 在消纳库区要充分发挥好截洪沟截留雨水的功能,减少雨水流入消纳库区,减少渗滤液量,确保消纳作业正常运行。
- (3) 按要求分区分单元科学,有序规范作业,保证消纳库区内 不积水、垃圾堆体的相对稳定。
- (4) 平时要巡查全场排水设施是否畅通,做到发现问题及时解决,特别是雨季来临前,要对全场排水设施进行一次维护、保养,确保雨污分流工作落到实处。场并存有相应的碎石土方,以备暴雨时急用。

5、雷电防护

由于建筑垃圾处置、消纳作业在露天,加上地理环境的特点,全场尤其消纳库区工作人员在雷雨时间易被伤害,因此,各类建筑垃圾处置设施的雷电防护应符合

以下要求:

- (1) 在建筑垃圾处置场所的全场最高处应安装防雷设施。
- (2) 强雷时间可暂停建筑垃圾的进场工作和室外处理工作。

6、职业病防治

建筑垃圾处置设施的工作人员,因长期在条件差、环境恶劣、有毒有害气体污染的环境下工作,对建筑垃圾处置设施职工的身体健康带来一定程度的影响。为了有效防治建筑垃圾处置设施职工的职业病,必须贯彻"安全第一,预防为主"和劳动保护条例的落实,确保职工身体健康。

- (1) 加强职业病防治宣传教育,增强自我防护意识;
- (2)改善工作条件和作业环境,定期配发劳动保护用品;建筑 垃圾处置场所应按照作业需求配置作业机械。并应配备必要的劳动工

具和职业病防护用品。建筑垃圾处置作业现场应设置劳动防护用品贮存室。并应定期进行盘库和补充;对使用过的劳动防护用品应定期进行清洗和消毒;有破损的劳动防护用品应及时更换。

- (3) 垃圾清运,应采用压缩式密封车辆以减少苍蝇的滋生。严格卫生消纳工艺的落实。即每天消纳的垃圾必须当天覆盖完毕,这能有效控制苍蝇的滋生。对场外带进或场内产生的蚊、蝇、鼠类带菌体,一方面要组织专业人员定期喷药消杀,另一方面加强填埋工序管理,及时清扫散落垃圾,及时清除场区内积水坑洼,减少蚊蝇的滋生地。对垃圾暴露面上的苍蝇,一般采用药物喷杀,喷杀时机最佳应选择在早晚黑暗天进行,但要注意药物对环境产生的副作用。还可用引诱的花蝇药物诱杀。在填埋场种植驱蝇植物,也是有效控制苍蝇密度的方法。在消纳场生活区,室外可采用低毒低残留药物喷雾和诱杀剂杀灭,还可用捕蝇笼诱捕,室内可采用粘蝇纸。药物应有专人保管,确保安全。
 - (4) 坚持每年一次职工身体检查, 建立健康档案。

7、环境保护与安全卫生空间规划

为了保证建筑垃圾治理全过程不对环境产生污染或影响,本规划根据舒城县建筑垃圾治理实际情况,在市区范围内根据不同服务区、不同功能和所处的不同治理阶段等,以及结合处置场、填埋场和消纳场等的规划布置,设置不同的等级的环境污染检测系统,并且划分了环境污染重点防护区和环境污染重点控制区,详细规划如下:

环境污染监测站:位于舒城县综合处置中心;主要负责对本填埋场、综合处置中心自身和周边用地的水、土、空气和噪音等环境的相关数据进行收集、统计和分析,并上报上一级管理系统,同时提供相关的信息服务。

环境污染检测点位于每个临时消纳场;主要负责对本临时消纳场 自身和周边用地的水、土、空气和噪音等环境的相关数据进行收集、 统计和分析,并上报上一级管理系统,同时提供相关的信息服务。

环境污染重点防护区:填埋场和临时消纳场周边区域;防止出现建筑垃圾对环境产生污染。

环境污染重点控制区:规划范围内居民主要居住区域;防止出现 建筑垃圾对主要居民生活环境产生污染。

第十章 保障措施与实施建议

一、保障措施

1、加强法律、法规建设,完善监督管理体系

目前,舒城县建筑垃圾处理设施缺乏,法规建设与实际管理存在一定差距,为此需不断总结建筑垃圾管理工作经验,加强建筑垃圾消纳管理、处置及综合利用等方面的法律、法规及实施细则,使建筑垃圾管理工作有法可依,有章可循。

1) 纳入各层次城市规划

建议将建筑垃圾处理设施规划选址纳入国土空间规划的详细规划中,特别是法定性较强的法定图则,实行统一规划、分期建设。

舒城县正处于快速城市化的进程中,城市发展日新月异,规划只有结合城市发展新形势及时检讨更新,才能持续合理地指导建设。因此,应建立规划的动态管理与滚动调校机制,加强对规划实施的跟踪与回馈,建立效果评价制度,根据实际变化情况,适时修编规划,确保规划对城市建设的正确引导。

2) 出台相关法律法规

法律既是保障规划实施的有效工具,也是推动规划实施的强大动力,建立一套完整的与建筑垃圾收集、再生资源回收利用相关的法律、 法规、规章和规范性档,保障本规划的顺利实施。

3) 深化环卫体制改革,促进建筑垃圾产业化发展

转变政府职能,实现政企分开、政事分开,积极引入市场机制,稳步推进环卫体制改革。认真执行国家的有关政策,促进城市建筑垃圾处理产业化发展。

通过财政直接投入、补贴及税收优惠等方式,吸引社会资本参与城市建筑垃圾处理设施建设及运营,建立多渠道投融资体系。

抓紧建立和完善政府支持城市建筑垃圾处理设施建设的价格、财税、金融、土地等政策,降低企业的生产和经营成本,扶持企业发展,减轻公众负担。

4) 加强环卫宣传工作

环卫管理的最终目标在于建立一种可持续的固体废物管理策略,但它不可能脱离社会支持系统而由环卫部门单独实现。应加强环卫宣传工作,利用电视、广播、报纸、大型户外广告、课堂等多种形式开展有关垃圾减量化及分类收集的宣传活动,培养以节约为荣、以浪费为耻的社会道德氛围,在全社会树立以循环、共生和可持续发展为核心的价值观。

5) 纳入诚信综合评价体系

住建部门应当将施工单位处置建筑垃圾的情况纳入建筑业企业 诚信综合评价体系进行管理,并按照规定程序记入企业信用档案。

2、强化执法和过程管理

加强对核准事项进行监督管理,对施工单位是否存在将建筑垃圾交给个人或者未经核准的运输单位清理运输处置进行核查,对运输单位是否按照核准事项要求实施运输活动进行监督。加强巡查力度。对乱倒建筑垃圾的违法行为进行处罚时,要求违法单位或个人对建筑垃圾进行自行清理。并教育其树立遵纪守法行为准则,责令违法单位或个人对违法行为造成的后果采取补救措施,即将违法倾倒的建筑垃圾清理干净,并运送到指定消纳场所填埋,减少违法行为造成的环境和社会危害。

1) 明确管理职责,加强部门协调

各级政府是规划实施的责任主体,切实加强领导,明确责任。各有关部门密切配合,分工负责,争取搞好舒城县建筑垃圾专项规划实

施工作。发展改革部门要强化项目前期工作,加强项目执行中的稽查监督。建设部门要加强对城市建筑垃圾处理设施建设和运行的监管,确保项目按期建成,充分发挥效益。

2) 规范项目管理, 加快设施建设

严格执行基础设施建设程序,加强项目的可行性研究和环境影响 评价,保障项目顺利实施。建设等部门要切实加强建筑垃圾处理设施 建设项目的施工图审查。

建筑垃圾智能管理信息系统建立在线登记制度,在线准入制度,动态扣分制度,及黑名单制度。通过对公司、人员、车辆的信息登记、审核入库,实时在线跟踪实现对单位、人员、车辆的信息化管理。

3) 改革体制,转变政府管理方式

进一步整合资源,创新体制,打破行政区划限制和部门分割,逐步实现区域资源共享,整合和优化配置,政府主管部门要进一步转变管理方式,从直接管理转变为宏观管理,引入市场机制,逐步实行处理设施的特许经营和委托运营。

3、技术保障措施

1) 建立和完善技术标准与评估体系

建筑垃圾处理技术适用性不仅取决于技术本身,而且取决于经济适用条件和环境标准要求。目前,我国建筑垃圾资源化技术的技术标准体系还不够健全,建立完善的建筑垃圾处理技术标准体系和评估体系可以客观地评价各种处理技术的水平,指导并促进舒城县建筑垃圾处理的健康发展。

2) 组织技术创新,解决关键技术问题

针对建筑垃圾处理存在的关键技术问题,组织技术创新、示范和推广应用,组织实施关键技术与装备国产化示范工程,不断提高建筑

垃圾资源化技术水平。

4、资金保障

1) 明确政府责任, 加大政府投资

明确政府在建筑垃圾管理中的责任,强调建筑垃圾管理是政府理 应为市民提供的公共服务之一。在建筑垃圾处理实施市场化运营的同 时,应继续坚持政府作为建筑垃圾管理主要投资人的角色,加大政府 投入资金的力度。

2) 通过市场化运营机制拓展资金来源

在确立政府主要投资人的基础上,可通过市场化经营机制拓展资金来源,特别是在处理设施的建设投资方面,应多渠道、多层次的筹集资金,改变单一的资金来源。同时完善投资政策,本着"谁投资,谁收益"的原则,充分发挥市场作用,加快建筑垃圾处理产业化进程。

二、实施建议

1、纳入规划统一管理平台

随着城市化进程的推进,城市建设用地日趋紧张,建筑垃圾处置设施用地选址工作日益艰难。建筑垃圾处理设施的建设前期工作重点在于用地的规划与控制工作,将建筑垃圾处理设施纳入市规划统一管理平台,可以有利于站点规划用地的管理控制,减少与相关规划的矛盾,协调建筑垃圾处理设施用地与其他建设用地的关系,切实保障建筑垃圾处理设施建设用地。

2、与时俱进,建设信息化管理平台

- (1) 建立健全的建筑垃圾管理信息平台
- 1)施工过程中产生的无法在工程区域内部实现平衡的外运余泥,可以通过交换调剂平台发布供给信息,与其他填土工程及时对接,最大程度地减少弃方现象;
 - 2) 引导建设单位、建筑垃圾处理设施,通过建筑垃圾管理信息

平台,加强建筑垃圾的交换利用。

(2) 建立数字化城市管理信息系统

建立数字化城市管理信息系统,实施建筑垃圾处置全过程信息化管理,实现建筑垃圾产生源头与收运过程及利用处置的实时动态监管,推动建筑垃圾管理进一步完善。

源头:建立建筑工地管理信息化采集系统。通过在建筑工地安装固定摄像头,对施工现场进行监控,进而掌握项目规模、排放建筑垃圾产量等信息。同时,建立建设项目在建管部门报建手续的信息与建筑垃圾排放申报核准信息互通机制。

运输:建立建筑垃圾运输车辆信息化管理系统。通过利用 3G 技术对运输车辆运行进行全程监控,车辆只要点火启动,车上的 GPS 定位系统就将自动运行,全程监控车辆行进的路线和时速。同时,建立公安、交通部门的车辆信息和建筑垃圾运输行政许可信息与行政执法信息互通机制。

终端处理:建立建筑垃圾处理设施管理信息化采集系统。通过在建筑垃圾处理设施按照固定摄像头,对设施的日常管理进行监控。

3、多方配合,实现源头减量化

对于建筑垃圾的管理,发达地区或国家采取的都是"源头削减战略"。借鉴国内外发达地区先进管理经验,建筑垃圾源头管理措施可以总结为:

- 1) 尽量避免产生建筑垃圾;
- 2) 无法避免产生建筑垃圾的情况下,应可能减少产生量;
- 3) 对于已经产生的建筑垃圾,可考虑通过技术手段(如粉碎大的混凝土块作为建筑骨料),对其进行再循环使用;
 - 4) 经过上述控制阶段后, 还要尽量减少大体积建筑垃圾, 以便

对建筑垃圾进行最后处置。

对建筑垃圾采取"源头削减战略",主要通过在以下环节采取相关技术措施实现:

- 1) 设计阶段进行减量化设计;
- 2) 在施工阶段对建筑垃圾进行控制:
- 3) 在施工现场对建筑垃圾进行处理。

借鉴国内外先进城市的成功管理经验,结合舒城县实际情况,规划建议采取以下措施以推进建筑垃圾源头减量工作:

- 1) 政府制定相关政策,推行绿色建筑设计。在建筑物的设计过程中,考虑提高建筑物的耐久性,采用尽量少产生建筑垃圾的结构设计,使用环保型建筑材料;
- 2)政府加强监督,推广绿色施工管理。优先考虑工程区域内挖填土石方平衡。规范建筑垃圾现场分类管理,从源头对建筑垃圾进行分类收集,推行建筑废料回收利用,引入移动式再生建材生产线,有效减少建筑垃圾排放总量。

4、加快规划建设处置设施

根据舒城县城市发展规划,合理规划布局及建设建筑垃圾处理设施。摸清本区域建筑垃圾产生现状,科学评估建筑垃圾发展趋势,按照就地、就近处置原则,综合考虑建筑垃圾产生量及分布、运输半径、环境保护等因素,合理规划布局,因地制宜统筹推进建筑垃圾转运、消纳和资源化利用设施建设,提升处理能力,满足各类建筑垃圾的处理需求。

5、投资方式多样化,拓宽建设途径

建筑垃圾处理设施建设模式建议结合实际情况,拓宽渠道,可考虑采用 PPP、特许经营等方式,鼓励社会资本投入建筑垃圾产业,形

成投资主体多元化、投资方式多样化、投资机制市场化的投融资体制, 走社会化建设、社会化管理的道路。

6、规范化建设和管理

- (1) 具体项目实施阶段,项目建设应遵守工程建设项目的相关流程。
- (2)根据相关规范建设建筑垃圾处理设施,满足绿地率以及防护林带的建设要求,减少噪声、扬尘等影响。消纳场在满容后应通过绿化美化设施减少对周边环境影响。
- (3)相关部门应进一步完善建筑垃圾处理设施管理制度,加强 日常管理,确保建筑垃圾处理设施规范运行。对违法设置的建筑垃圾 处理设施要坚决予依法查处。
- (4)建筑垃圾处理设施运营单位必须对运入场内的建筑垃圾进行监视,不得接收禁止入场的废物。
- (5)应加强对建筑垃圾处理设施周边和出入口环境卫生的管理和监督。出入口应设置相应的冲洗设施、排水设施和沉淀设施,运输车辆出场时,必须经过除泥、冲洗等保洁措施,防止车辆带泥污染道路。

7、政策引导、扶持,大力发展建筑垃圾资源化利用

(1) 政策引导

为建筑垃圾综合利用制订法规,制定生产、销售、使用建筑垃圾资源化产品的优惠政策,鼓励企业利用建筑垃圾生产建筑材料和进行再生利用,鼓励建设单位、施工单位优先采用建筑垃圾资源化产品。

制定推广使用建筑垃圾资源化产品的办法,政府工程应带头使用,逐步提高建筑垃圾资源化产品在建设工程项目中的使用比例。

针对不符合国家和地方的产业政策、建材革新的有关规定、产品

质量标准的技术工艺及建筑垃圾资源化产品,建立淘汰名录,明令禁止采用。

(2) 政府扶持

鼓励研究、开发和使用建筑垃圾减排及综合利用新技术,利用财政性资金引进建筑垃圾综合利用重大技术、装备。对建筑垃圾综合利用企业在用地、用水、用地等方面给予政策优惠或资金补贴。

(3) 技术研究

对建筑垃圾进行资源化循环利用方面的科学研究,是建筑垃圾实现循环经济的根本保证。应发挥科研、设计、高等院校的技术优势,加强对建筑垃圾的回收利用的科研投入,并建立建筑垃圾资源化产品标准。

开展形式多样的对外交流与合作,借鉴国内外其他城市先进的建筑垃圾处理处置经验,围绕建筑垃圾处理这个主题,在资金、技术、人才、管理等方面积极开展国内和国际交流与合作,积极引进、推广国外的先进技术和管理经验。各级政府要把建筑垃圾处理设施建设项目纳入招商引资范围,积极鼓励各种经济体参与有关项目的合资合作。

8、促进信息公开化

建筑垃圾产生、运输、综合利用的管理过程具有明显的系统性、空间地域性和实效性的特征,应建立建筑垃圾信息管理信息通畅、公开化,以便于城市管理部门对建筑垃圾产生、运输、综合利用等各环节和相关单位进行整体协调,即强调城市管理各专业系统之间、不同片区之间、管理层与市民之间的有效沟通与整合。通过建立建筑垃圾管理信息平台,整合城管、住建、自然资源、各建设单位、交通等部门的相关信息,从整体上协调建筑垃圾的处置;并通过媒体或网络发

布各个处理设施的详细信息及运输路线等,发动、引导社会力量、社区市民主动参与,鼓励献计献策、参与监督,建立建筑垃圾收运处置管理社会化、多层面、运作有效的公众监管新机制。

9、加强安全运营管理意识

设置专门管理机构,制定严格措施,并配备必要设施,确保建筑垃圾处理设施运行的安全性和环保性。建筑垃圾处理设施应执行值班制,建筑垃圾运输车辆按计划点位倾倒垃圾,并用推土机、碾压机等机械工具将垃圾推平压实。同时还应重点预防停止运营后出现堆积垃圾垮塌、滑坡等衍生地质灾害的发生。建议主管部门定期对企业进行安全生产检查,督促企业切实加强安全生产责任主体意识,通过定期摸排、查缺补漏,不断优化完善各项安全生产防护措施。企业应对全部入职员工进行岗前培训,关键器械设备操作岗位的员工须按规定持有相应资格证书方可上岗作业。

10、完善环境评价和监控体系

充分发挥环境保护技术政策在建筑垃圾处理设施建设中的指导作用,尽快建立符合发展需要和市场经济特点的建筑垃圾处理设施环境评价体系。加强有关环境政策的调查研究,结合城市定位、性质和功能,积极探讨环境资源优先的财政税费政策,促进建筑垃圾资源的合理利用,限制资源和环境的过度使用和无序开发。

11、开展安全风险评估

定期对已建设投产的建筑垃圾消纳场、资源化处理设施开展安全风险评估,及时掌握及辨识风险源、消除安全隐患、制定风险防控措施等。针对消纳场与资源化处理设施,安全风险评估的主要工作如下:

(1) 建筑垃圾消纳场

评估周期至少为每年1次,主要评估主要内容:周边敏感点(人

员密集场所、加油站等)、已消纳垃圾量、堆体测量、边坡稳定性、地表水导排措施、机械作业及人员操作规范性、应急及防护装备设备、场地标识、围挡围闭、信息记录、上岗培训等。

安全评估不代替日常运营的安全生产检查。采用填埋处置的消纳场,还应对地下水、地表水等指标进行定期监测,具体以环保部门要求为准。

(2) 建筑垃圾资源化处理设施

评估周期至少为每年1次,安全评估不代替日常运营的安全生产检查。主要评估主要对象:周边敏感点(人员密集场所、加油站、高边陂等)、有限空间、物料堆场、物料仓库仓储、变配电、消防、有毒有害气体及粉尘、应急及防护装备设备、场地标识、围挡围闭、日常作业规范性、信息记录、上岗培训等。

12、加大宣传扶持力度

建议加大宣传力度,可以从国家循环经济发展、生态文明建设、再生产品安全环保性能等方面全方位大力宣传使用建筑垃圾资源化产品的好处,营造积极使用建筑垃圾资源化产品的良好氛围。进一步加大政策扶持,出台用地、税收、评优等方面的优惠扶持政策,落实建筑垃圾资源化产品税收优惠政策,对积极应用建筑垃圾资源化产品的建设、施工单位及示范工程给予合理奖励。将建筑垃圾资源化产品纳入政府绿色建材采购目录,引导建筑垃圾资源化产品在政府建设项目中率先使用。